
International Journal of Research Studies in Science, Engineering and Technology

Volume 6, Issue 11, 2019, PP 74-86

 ISSN 2349-476X

DOI: https://doi.org/10.22259/2349-476X.0611007

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 74

Gradient Boosting Decision Trees with FPGA Accelerator

Annadasu Saiprathima
1
, Guntupalli Sai Sravani

1
, Dr. Sunitha Kondepu

2

1
CSE Department, Malineni Lakshmaiah Women”s Engineering College, Guntur, AP

2
Associate Professor, CSE Department, Malineni Lakshmaiah Women”s Engineering College,

Guntur, AP

INTRODUCTION

Decision trees are a simple and effective
machine learning technique that have been

proven to work in a variety of categorization

tasks. Because energy efficiency is as
crucial as precision in embedded systems, it

is necessary to look for efficient algorithms

that can be accelerated. As a result, decision
trees are an excellent candidate for

developing an FPGA accelerator.

For sophisticated tasks, a single decision

tree is typically insufficient, however
ensemble approaches allow multiple trees to

be combined to solve complex issues.

Gradient Boosting Decision Trees (GBDT)
[1] is an ensemble method for improving

accuracy by incrementally adding new trees

in each iteration that improve the previous
ones' results. Traditional GBDT

implementations have poor scaling for large

datasets or a high number of features,

however new efficient implementations,
such as XCGBoost [2], CatBoost [3], or

LightGBM [4,] have recently solved this

issue. LightGBM, for example, is an open-
source GBDT-based framework that

provides up to 20 times the speed of

traditional GBDT. Due to its efficiency and

accuracy, GBDTs are now considered one of
the most powerful machine learning models

thanks to LightGBM's support. For example,

they've lately been used in a number of

successful machine learning applications.
They can be applied to a wide range of

issues. For example, they have been

successfully used to produce accurate
COVID-19 evolution forecasts and identify

factors that influence its transmission rate

[6], to detect fraud from customer

transactions [7], to estimate major air
pollutants risks to human health [8] using

satellite-based aerosol optical depth, and to

classify GPS signal reception in order to
improve its accuracy [9. Furthermore, a

recent paper [10] examined various machine

learning approaches for image processing in
remote systems, with a focus on on-board

processing, which necessitates both

performance and low power consumption.

The scientists discovered that GBDTs offer
an intriguing trade-off between the

utilisation of computing and hardware

resources and the precision gained. Their
accuracy scores were comparable to

convolutional neural networks, the most

accurate approach at the time, while
requiring one order of magnitude less CPU

processes. Furthermore, the majority of their

inference operations are integer

comparisons, which can be efficiently
calculated even by low-power CPUs and

quickly accelerated by FPGAs. As a result,

ABSTRACT

A decision tree is a commonly used machine learning approach. The strong Gradient Boosting ensemble

method, which allows for steadily increasing accuracy at the cost of processing a huge number of decision

trees, has recently expanded their popularity. We describe an accelerator in this research that optimises the

execution of these trees while lowering energy usage. We tested it using a relevant case-study: pixel

classification of hyperspectral pictures, which we implemented in an FPGA for embedded systems. In our

tests with various images, our accelerator was able to process hyperspectral photos at the same rate as the

hyperspectral sensors created them. On average, our design is twice as fast as a high-performance

processor running optimised software. Our design is twice as quick and uses 72 times less energy on

average. It is 30 times faster and uses 23 times less energy than an embedded processor.

Keywords: GBDT; FPGA; energy efficiency; decision trees.

Gradient Boosting Decision Trees with FPGA Accelerator

75 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

they are a viable solution for embedded

systems.
In this research, we describe a Gradient

Boosting Decision Trees (GBDT)

accelerator that can run GBDTs trained with

LightGBM. We've set up a repository
including the GBDT models we utilised as

well as our source codes [11]. Our

accelerator was created for embedded
systems, which have limited hardware

resources and power budgets. Hence Our

accelerator's register-transfer level (RTL)
design was written in VHDL, and we used it

to demonstrate its potential in a low-cost

FPGA evaluation board (ZedBoard) [12],

which includes an FPGA for embedded
systems, and we used it for the relevant case

study analysed in [10]: pixel classification of

hyperspectral images with the goal of
processing the data at run-time. We analysed

the execution time and power consumption

of our accelerator and discovered that, even
with a modest FPGA, our design can handle

complex GBDT models. Our accelerator can

process hyperspectral information at the

same pace as the hyperspectral sensors
create it in our case study, and the dynamic

energy consumption is low.

RELATED WORK

FPGA acceleration of Decision Trees has been

the subject of several earlier studies. The

training processes are the centre of reference
[13]. In our scenario, we'll suppose that

training is done offline and that we'll

concentrate on inference, which will be done

online. A bespoke pipeline architecture was
provided in reference [14], demonstrating the

possibilities of an accelerator for decision

trees. They do not support GBDT, however,
and only use their methodology in basic case

studies. To develop an FPGA accelerator,

reference [15] offers using a high-level
synthesis technique. They concentrate on

Random Forest, an ensemble technique that

calculates the average value of multiple trees

trained with various input data to produce a
more accurate and robust final result. We've

made the decision to

Another distinction is that we created a custom
register-transfer level (RTL) architecture

rather than relying on high-level synthesis to

produce the RTL design from C-code. High-

level synthesis is appealing for portability and
shortening the design cycle, but we can

completely design the final architecture and

investigate various sophisticated optimization

options using our RTL design. Another study

that examines the advantages of implementing
Random Forest on FPGAs is reference [16].

They compare the performance of random

forest classifiers on FPGAs, GP-GPUs, and

multi-core CPUs. They conclude that FPGAs
provide the best performance, but that due to

the size of the forest, they do not scale. As

previously stated, GBDT models use fewer
trees to achieve the same results. FPGAs could

be utilised to speed up the execution of

decision trees in the Microsoft Kinect vision
pipeline, which recognises human body parts

and movements. They employ a high-

performance FPGA and achieve excellent

results for decision trees organised as a
random forest. They do note, however, that

their architecture is not suitable for low-power

FPGAs due to its memory requirements.
Reference [18] is a recent paper that describes

an approach for producing compact and almost

identical representations of the original input
decision trees. by means of threshold

compaction The fundamental idea is to group

comparable thresholds together to reduce the

number of individual thresholds required, and
then save those values as hard-wired logic.

The size of the trees can be lowered using this

method. This technique is diametrically
opposed to our approach and may be

advantageous to our design because it reduces

the size of the trees, making storage in

embedded devices easier. Another recent paper
[19] examines the advantages of FPGA

acceleration for Gradient-boosted decision

trees. They are evaluating the Amazon cloud
services in this situation, which include access

to high-performance FPGAs that can be

exploited via high-level interfaces. As a result,
this study complements ours because it focuses

on high-performance cloud servers, whereas

we focus on data centres. In conclusion, earlier

research has shown that FPGAs may be used
to execute decision trees. The majority of these

projects focus on Random Forest, and they

either construct small systems or require high-
performance FPGAs. As a result, in order to

apply these technologies in embedded systems,

their scalability must be improved. We offer a
GBDT-based accelerator capable of solving

very complex models even in a small FPGA in

this study. GBDTs have shown outstanding

results in a variety of machine learning
challenges, and their properties are particularly

appealing to embedded systems. As a result,

we developed a hardware accelerator for
FPGAs with the goal of executing

Gradient Boosting Decision Trees with FPGA Accelerator

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 76

sophisticated models based on GBDT in low-

cost, low-energy devices. In order to
demonstrate.

DECISION TREES WITH GRADIENT

BOOSTING

A Decision Tree is a decision method that

generates its result using a tree-like paradigm.

It can be viewed as a means of displaying an
algorithm with only conditional control

statements. In a binary tree structure, each

tree's decision is based on a sequence of

comparisons connected between them. Each
leaf node includes the outcome of the

prediction [20], whereas each internal node

indicates a comparison needed to determine
the next node. When decision trees are used to

solve classification problems, each tree leaf is

labelled with the anticipated class, a

probability for that class, or a probability
distribution across all classes. Figure 1 depicts

the use of a Decision Tree to solve a sequence

of problems. First, this tree compares the value
of feature 4 of the input to 20; when the input

value decreases, it moves to the left child and

repeats the process until it reaches the leaf
with the output value of 0.3.

One of the advantages of Decision Trees over

other techniques is that no input preprocessing
is required, such as data normalisation,

scaling, or centering. They work with the input

data in its current state [20]. The reason for

this is that features are never blended together.
As shown in Figure 1, the trees compare the

value of an input feature to another value of

the same feature in each comparison. As a
result, multiple scales can be applied to

various aspects. Other Machine Learning

models combine characteristics to produce a
single value; as a result, if their values are of

various orders of magnitude, some features

will initially dominate the outcome. This can

be corrected during the training process, but in
order to speed up training and increase results,

normalisation will be required. Because

avoiding normalisationminimises the number
of run-time computations required, it's a

particularly appealing feature for embedded

systems. Furthermore, the magnitude of the

input data has no bearing on the model's size

or computations. As a result, dimensionality

reduction techniques like Principal Component
Analysis aren't required to shrink the model.

This is also highly useful for embedded

systems because it significantly minimises the

amount of computing required during
inference. During training, the most important

attributes are chosen and employed for the

tree's comparisons. As a result, features with
more information will be employed more

frequently in comparisons, whereas

characteristics that do not provide helpful
information for the classification problem will

be omitted. This is an intriguing feature of this

algorithm because, based on the same feature

selection decisions made during training, we
may easily repeat the process. This means that

Decision Trees may be used to determine

which features provide more useful
information, and that this information can then

be used to train even smaller models that retain

the majority of the information while requiring

less memory.

Gradient Boosting Decision Trees with FPGA Accelerator

77 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

Nonetheless, for complex categorization tasks,

a single Decision Tree does not deliver reliable
answers. The approach is to employ an

ensemble method, which aggregates the

findings of multiple trees to enhance accuracy

levels. Gradient Boosting is an ensemble
method that integrates the outcomes of various

predictors in such a way that each tree tries to

improve on the preceding one's results. The
gradient boosting approach entails training

predictors in a sequential manner, with each

subsequent iteration attempting to fix the
residual error caused in the preceding iteration.

In other words, each predictor is taught to

correct the residual error of the one before it.

The trees can then be utilised for prediction by
simply adding the results of all the trees [20].

Designers can also use the GBDT model to

trade off accuracy for computation and model
size. If a GBDT is trained for 100 iterations,

for example, it will produce 100 trees for each

class. The designer might then choose whether
or not to use all of them or to discard the final

ones. Similar trade-offs can be seen in other

machine learning methods, such as lowering

the number of convolutional layers in a
convolutional neural network (CNN).

However, in that instance, each conceivable

design must be retrained, but with GBDT, only
one design must be retrained. Again, this is

ideal for embedded systems since we can vary

the model size based on memory resources, as

well as execution time and power consumption

constraints.
In terms of computation, the inference process

in most machine learning algorithms

necessitates a large number of floating point

operations. CNNs and multilayer perceptrons
(MLPs), for example, are built using floating-

point multiply-accumulate operations.

Calculating a tree's output, on the other hand,
merely requires a few comparisons. All of

these comparisons will only use numbers if the

input data is integers, as it is with pixels in an
image. This considerably decreases the

computational load. In certain circumstances,

the sole floating point operation will be the

aggregation of each tree's outputs. As a result,
each tree will only have one floating point

addition. These improvements can be

substituted in embedded systems by fixed
precision operations, allowing the entire model

to be executed even in systems without

floating point units.

DESIGN ARCHITECTURE

For classification tasks, LightGBM employs a

one-vs-all technique, which entails training a
separate estimator (i.e., a set of trees) for each

class, with each one predicting the same

thing.The likelihood of belonging to that

group. Each class has its own private trees in
this technique, and the likelihood of belonging

to a certain class is calculated by summing the

results of the trees, as shown in Figure 2.

As a result, each class is independent of the

others during inference, and the trees of each

class can be studied in parallel. By providing
one particular module for each class, our

accelerator takes use of this parallelism.

It is critical to optimise memory resources

when designing an efficient accelerator. To

reduce data transfers to the external memory,

we want to store the trees in the FPGA's on-

chip memory resources. However, because
those resources are limited, optimising the

format used to store the trees in order to

reduce their memory requirements is a major

part of the design. All of a class's trees are

Gradient Boosting Decision Trees with FPGA Accelerator

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 78

stored in the trees nodes RAM memory, which

is unique to the class module. The format we
used to store the tree structure on this memory

is shown in Figure 3. Our goal is to fit all of

the information about each node into a 32-bit

word. This word size can be increased or
decreased as needed because our code uses

generic parameters. However, in our tests, we

found that 32 bits provided a fair balance
between tree representation accuracy and

storage requirements. These 32 bits are

formatted differently depending on whether
they are leaf nodes or not. There are four fields

in the non-leaf format. The first and second

fields record the information needed to

perform the comparison, such as which input
(8 bit) will be utilised and which value will be

compared (16 bit). The addresses of the child

nodes must then be saved. It is not possible to
save its exact addresses because we only have

8 bits left. In fact, given the size of the

memories we're employing, we'd require
nearly all of the 32-bits to hold that data. We

came up with two strategies to fix this

problem. To begin, nodes are stored in the

trees nodes memory using the pre-order
traversal approach, which means that the left

child of a non-leaf node is always allocated.

The address of the left child does not need to

be kept in this method because it may be
acquired by adding one to the current address.

As a result, we just need to save the address of

the correct child. Second, rather than keeping

the right child's absolute address, we store a
relative address that specifies its distance from

the current address. A 7-bit field is used to

store the relative distance. The greatest depth
of a tree using this method is 128. This is more

than adequate for all of the trees we've looked

at, as GBDT doesn't rely on really massive
trees, but rather on a vast number of them.

Finally, we've included a flag in each node's

less significant bit: This In our tests, 14 bits

were sufficient for absolute addresses. The
LightGBM GBDTs' initial output is a 32-bit

floating point number. In our research,

however, we get similar accuracy using a 16-
bit fixed-point representation. In any case, by

utilising relative addresses for the @next tree

field instead of absolute addresses, it is
possible to use additional bits for the output

without increasing the size of the memory

word. The last two bits are two flags that

indicate if this is the class's final tree and
whether or not the node is a leaf.

Figure 4 shows a simple example of storing

two trees of the same class. As seen in the

diagram, the first tree's root node is stored at
address 0. Then, following these same criteria

recursively, the full tree structure

corresponding to its left child is stored, and
ultimately, the right child is stored last. The

relative leap to its right child is stored in the

bits corresponding to the rel@ right child field.

The first tree's leaf nodes all indicate that the

following tree starts at address 5. Finally, the
second tree's leaf nodes signal that there are no

more trees to be processed. There are eight

nodes in this simple example. We will be
successful if we implement it in our

architecture.

Gradient Boosting Decision Trees with FPGA Accelerator

79 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

The internal design of one of the modules that

executes a class's trees is shown in Figure 5. A

register, as well as the previously mentioned
trees nodes RAM memory, are included in the

design. last node is used to hold the address of

the most recently visited node, as well as the

logic that performs comparisons, computes the

next node to visit, and accumulates the tree
results.

The feature field of non-leaf nodes is utilised

in this design to select one feature from all of
the system's input features. The cmp value

field is compared to the selected feature. If the

feature's value is less than or equal to the cmp

value, the non-leaf node's left child is chosen.
To accomplish this, we increase the value of

@ last node by one. Otherwise, the rel@ right

child is used to choose the correct child. If the
current node is a non-leaf (is leaf value is 0),

this will generate the @ node that will be used

to address the trees nodes RAM memory. If
the current node is a leaf (is leaf = 1) but not

the last tree (is last tree = 0), the Because we

dedicate 14 bits to the @ next tree, the

maximum size of the trees nodes RAM will be
214 words, and the theoretical maximum

number of nodes in the same tree will be 26

due to the size of the relative jump rel@ right

child, the maximum size of the trees nodes
RAM will be 214 words. In terms of RAM

capacity, we could address any number of

trees by making @ next tree a relative address
from the current node and adding it to @ last

node, but the current size is significantly larger

than our requirements. We use the 13 least
significant of the 14 significant bits in our

design to assign 8 BRAMs of 32 Kb to the

Gradient Boosting Decision Trees with FPGA Accelerator

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 80

trees of each class, resulting in 8192 words of

32 bits. We simply need to wait till every class
module has completed before checking the

output of the argmax module, which selects

the best pixel, once we have received the

features of one pixel.The number of students

in the class receiving the best grade. Figure 6

shows a simplified version of the accelerator
that demonstrates this behaviour, omitting the

control lines and communications

management.

We simply need to wait till every class module

has completed before checking the output of

the argmax module, which selects the best

pixel, once we have received the features of
one pixel. The number of students in the class

receiving the best grade. Figure 6 shows a

simplified version of the accelerator that
demonstrates this behaviour, omitting the

control lines and communications

management. Each clock cycle, this

architecture can process one node per class.
However, in our tests, if we construct a system

that consumes the majority of the on-chip

memory resources, the place&route procedure

becomes complicated, and the clock frequency

drops to 55 MHz. This can be fixed by

utilising a more current FPGA with greater

capacity and better integration technology, but
it may also be improved by using computer

architecture optimization techniques similar to

those used to enhance the execution of
general-purpose processors. The following

diagrams will help to demonstrate this point.

The execution of the previously stated version

is shown in Figure 7a (single-cycle
implementation). The execution of the nodes

in one of the classes is depicted in the diagram.

If we work together, we can

Our goal is to increase the processing speed

while maintaining one node each cycle. We

devised a multi-cycle approach to minimise

the clock cycle. We looked at three alternative

clock cycle options: two, three, and four.

Additional registers have been added to the

design in these versions in order to separate

the longest combinational paths. We chose the

Gradient Boosting Decision Trees with FPGA Accelerator

81 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

version that executes the nodes in three cycles

based on that study because it achieves a
significant clock-period reduction while also

providing a clear architecture that makes it

easy to identify the operations that are carried

out in each cycle. The benefits of four cycles
were minimal, and the resulting execution

pattern was not obvious. The results are shown

in Figure 7b. The clock frequency has been
improved, as shown in the diagram, but the

system is still slower than before because each

node requires three clock cycles. However,
since the architecture has been partitioned in a

logical manner, we may try a pipeline method.

We have three different pipeline phases, as

shown in Figure 8a, and each one consumes
various hardware resources. As a result, as

soon as the first node completes the first stage,

we can begin executing a second node. The
first stage in our design is to read the node

(fetch), the second step is to identify the kind

of node and read the required feature (decode),
and the final step is to write the code. The

problem with this technique is that we don't

know which node will come next until the

preceding node has completed its execution
stage. As a result, we won't be able to get it

ahead of time. As a result, a basic pipeline will

be of little use. This is the same issue that
traditional processors have when dealing with

conditional branches in instructions. High-

performance processors solve this problem by
including complex support for speculative

execution. However, this is not an efficient

solution for embedded systems because it adds

significant energy overheads, and it won't
produce good results unless clear patterns for

branch predictions can be identified. As a

result, there is no simple way to benefit from
the pipeline architecture.

However, by combining the pipeline with a
multi-threading technique, this problem can be

alleviated. The concept is to incorporate

functionality to allow the execution of three
distinct trees to be interleaved. Three @ last

node registers can be used to accomplish this

(that is the same as having three programme
counters in a processor). A class's trees are

separated into three sets, and each counter is in

charge of one of these sets. Figure 8b

demonstrates how the three trees' executions
are interleaved. Three distinct trees (n, m, and

l) are used in this example. We have the same

time with this approach as with the multi-cycle
approach, and we may execute one node every

cycle, just like with the single-cycle
implementation.

Figure 9 depicts the multi-threaded class

module's final structure. The hardware
overhead is minimal, as shown in the diagram.

We only need a few registers to store the

information needed for each stage, the
additional @ last node counters, two additional

registers indicating the starting address of the

first tree in each set, three 1-bit registers

indicating whether the processing of each set
has been completed, and finally modify the

control unit. Furthermore, both versions have

the same memory resources, which are the
most important in our design.

Gradient Boosting Decision Trees with FPGA Accelerator

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 82

DATASET AND MODELS

Hundreds of spectral bands make up

hyperspectral photographs, with each band

capturing the responses of ground objects at a
specific wavelength. As a result, each image

pixel can be thought of as a spectral signature,

as seen in Figure 10. Machine learning

approaches, as discussed in [10], can classify
pixels in hyperspectral images with high

accuracy. Convolutional neural networks

produced the most effective outcomes.
However, because to the large size of

hyperspectral images, it is a computationally

costly process that cannot be used in on-board
systems with limited resources. This study

discovered that GBDTs present a highly

intriguing trade-off between the usage of

computing and hardware resources and the

accuracy acquired, because it achieved high
accuracy rates while carrying out the task. Our

goal is to attain the same accuracy results as

those described in [10] while running the trees

through our accelerator, which is based on a
tiny FPGA. We also want to process the pixels

at the same rate as they are created by the

hyperspectral sensors as a secondary goal.
The input for hyperspectral picture pixel

classification is a single pixel made up of a

series of characteristics, each of which is a 16-
bit integer. The amount of features in a picture

is determined by the sensor used to capture it;

in our case, we employed datasets with 103 to

224 features. Each node in the tree chooses
one of these characteristics and compares it to

the value stored in the node to determine

whether to choose the left or right child.

Gradient Boosting Decision Trees with FPGA Accelerator

83 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

Our design was created in VHDL with generic

parameters to allow for a lot of customization.
As a result, it may be applied to a variety of

images with varying numbers of classes, input

features, and trees per class... Table 1

summarises the main characteristics of the
hyperspectral images analysed, Indian Pines

(IP), Kennedy Space Center (KSC), Pavia

University (PU), and Salinas Valley (SV), as
well as the GBDT model configuration chosen

based on those presented in [10], which

analysed the various GBDT parameters and
chose the best in each case. The table displays

the number of features (ft.) and classes (cl.) in

each image, as well as the total number of

trees employed (trees), as well as several
essential model parameters used to train the

models, such as the minimum number of trees.

Finally, it shows the accuracy gained using the

LightGBM library to execute the models in
[10], as well as the accuracy reached using

identical models customised for our

accelerator. The adjustments in the initial
decision trees have essentially no influence on

the final accuracy, as seen in the table.

[11] contains the models that have been
codified using the node representation format

specified.

EXPERIMENTAL RESULTS

The accelerator was created to fit in the FPGA

of the Zedboard Xilinx Zynq-7000 evaluation

board (Digilent, Hong Kong, China) [12].
Because this is a relatively small FPGA with

outdated technology, the design requirements

are fairly limited. The major purpose of
employing this device is to replicate the

properties of rad-hard and rad-tolerant FPGAs
that have been certified for embedded on-

board devices. Because these devices do not

use the most up-to-date integration technology,
using the most recent generation of FPGAs

will be impractical. The hardware resources of

single-cycle and multi-threading designs in
this FPGA are shown in Table 2.

The amount of LUTs and Flip-Flops is the
only discernible increase; the rest is null or

minor. The design doesn't care about these

increments because it only uses a small portion

of these resources. The on-chip memory

resources are the system's bottleneck, as seen
in the table. In fact, some photos consume

nearly all of the available RAM. As a result, it

was critical to optimise the memory format for

storing the trees.

Gradient Boosting Decision Trees with FPGA Accelerator

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 84

The performance results are shown in Table 3.

In this example, the multi-threaded
architecture improves speed by 67–85 percent.

As a result, the computer architecture

modifications in this accelerator deliver a

significant performance boost at a low space
cost. The Multi-threaded design incurs a slight

penalty in terms of the number of cycles

required to process each node (Avg.
Cycles/Node), resulting in a greater number of

cycles per pixel (Avg. Cycles/px.). The reason

for this is that the trees are separated into three
groups, each of which will not be properly

balanced at all times. Only two of the three

threads have useful work when one of the sets

finishes. To alleviate this issue, we divided the
trees into groups based on their average depth,

attempting to balance the burden across all

groups. We can't guarantee a perfect balance
because the depth of the trees depends on the

path picked and will be different for each

input, thus these modest penalties arise. In
terms of communications, we've implemented

a DMA to read the input data from the external

off-chip memory in our design. Because the

latency of transferring one pixel's input data is
less than the computation itself, it can be

completely overlapped with the processing

time of the preceding input data and has no

effect on throughput.
We ran the inference of the models described

in [10] in a high performance (HP) CPU, an

Intel(R) Core(TM) i5-8400 CPU @ 2.80GHz

(Intel Corporation, Santa Clara, CA, USA), as
well as an embedded system (ES) CPU, the

Dual-core ARM Cortex-A9 @ 667 MHz (Arm

Ltd., Cambridge, England) that is part of the
same system-on-a-chip. gcc 7.3.1 was used to

compile this code, with the -O3 optimization

setting. Table 4 displays the total energy
required for each image to complete the entire

test set, as well as the performance in pixels

per second. These tests were carried out using

a Yokogawa WT210 digital power metre,
which has been approved by the Standard

Performance Evaluation Corporation (SPEC)

for power efficiency benchmarking [21]. Only
the dynamic energy consumption, i.e. the

consumption caused by the trees' execution, is

included in the table. To that aim, we
examined the power consumption of the

FPGA, Cortex-A9, and i5-8400 for five

minutes, both in idle mode and during the

execution of the models, and calculated the
average increase in power consumption from

those measurements.

Gradient Boosting Decision Trees with FPGA Accelerator

85 International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019

According to these findings, the HP CPU execution consumes 72 times more energy than the FPGA

design when doing test bench inference, despite the fact that the FPGA design is twice as quick. The
ES CPU consumes 23 times more energy than the FPGA architecture while being 30 times faster. The

last comparison is particularly intriguing because this processor is on the same chip as the FPGA, uses

the same main memory, and runs at a nearly seven-fold quicker speed. This highlights the
performance and energy efficiency advantages of a bespoke accelerator. Finally, one of our goals was

to analyse the pixels at the same rate as they were produced by the hyperspectral sensors. According

to [22], the AVIRIS sensor used to collect the majority of our datasets needs to process 62, 873.6

pixels per second to attain complete real-time performance. Ourmulti-threading design achieves
this speed in three of the four images (KSC, PUandSV), and achieves 98.4% of that speed in a third

one(IP). Hence, wecanconcludethatthisdesigniscapableofachievingreal-timeperformancein

many scenarios even using a small FPGA.

CONCLUSION

GDBT is a machine learning model with a lot

of power. Because its main operations are
simple comparisons, its properties make it

particularly well suited to being accelerated in

FPGAs. Memory constraints were a major

consideration in the accelerator's design. The
key to allowing sophisticated models to be

implemented in small FPGAs has been

optimising the format used to store the trees.
Furthermore, after examining our accelerator's

execution, we discovered a pipeline and multi-

threading execution scheme that maximises
FPGA resource consumption and produces a

67–85 percent speed gain over single-cycle

execution. For a relevant case study, we tested

our accelerator with complex models and

demonstrated that it can handle data at high

speeds. with a very low power usage overhead
during runtime Furthermore, when compared

to LightGBM execution on a high-performing

CPU, our model achieves 2x performance
while consuming 72x less energy. In the

instance of an embedded system CPU, our

solution improves performance by 30 times
while consuming 23 times less energy during

execution. As a result, this architecture is ideal

for high-performance embedded systems,

which was our initial goal.

REFERENCES

J.H. Friedman, J.H. Friedman, J.H. Friedman, J.H.

Friedman, J.H. Friedman, J.H. Comput. Stat.

Data Anal., vol. 38, no. 3, pp. 367–378.

[CrossRef]

XGBoost: A Scalable Tree Boosting System, T.

Chen and C. Guestrin. pp. 785–794 in
Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge

Discovery and Data Mining (KDD '16), San

Francisco, CA, USA, August 13–17, 2016.

CatBoost: unbiased boosting using categorical

features. Prokhorenkova, L.; Gusev, G.;
Vorobev, A.; Dorogush, A.V.; Gulin, A.

arXiv:1706.09516, arXiv:1706.09516, arXiv:

1706.09516, arXiv:17 G. Ke, Q. Meng, T.

Finley, T. Wang, T. Chen, W. Ma, W. Ye, Q.

Ye, T.Y. Liu, T.Y. Liu, T.Y. Liu, T.Y. Liu,
T.Y. Liu, T.Y. Liu, T.Y. Liu, T.Y. Liu, T.Y.

Li A Highly Efficient Gradient Boosting

Decision Tree is LightGBM. In Guyon, I.,

Luxburg, U.V., Bengio, S., Wallach, H.,

Fergus, R., Vishwanathan, S., Garnett, R.,

Eds., Advances in Neural Information
Processing Systems 30; Curran Associates,

Inc.: Red Hook, NY, USA, 2017; pp. 3146–

3154.

Winning Solutions for Microsoft's Machine

Learning Challenge. Microsoft, 2020. Git
Hub: https://github.com/microsoft/LightGB

M/blob/master/examples/README.md

(accessed on 28 January 2021).

6. Li, S.; Lin, Y.; Zhu, T.; Fan, M.; Xu, S.; Qiu,

W.; Chen, C.; Li, L.; Wang, Y.; Yan, J.; et al.

Li, S.; Lin, Y.; Zhu, T.; Fan, M.; Xu, S.; Qiu,
W.; Chen, C.; Li, L.; Wang, Machine learning

technology was used to develop and

externally evaluate prediction models for

https://github.com/

Gradient Boosting Decision Trees with FPGA Accelerator

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019 86

COVID-19 patient mortality. 2021, Neural

Comput. Appl. [CrossRef] [PubMed].

C. Deotte. 1st Place Solution in the IEEE-CIS

Fraud Detection Contest.

https://www.kaggle.com/c/ieee-fraud-

detection/discussion/111284 (retrieved on

January 28, 2021).

8. Zhang, T.; He, W.; Zheng, H.; Cui, Y.; Song, H.;

Fu, S. Zhang, T.; He, W.; Zheng, H.; Cui, Y.;

Song, H.; Fu, S. A gradient boosting decision

tree is used to estimate ground PM2.5 using

satellite data. 128801 in Chemosphere 2020.

[CrossRef] [PubMed]

R. Sun, G. Wang, W. Zhang, L.T. Hsu, and W.

Ochieng A GPS signal reception

categorization system based on a gradient

boosting decision tree. Appl. Soft Computing,

vol. 86, no. 105942, 2019. [CrossRef]

A. Alcolea, M.E. Paoletti, J.M. Haut, J.M. Resano,

J. Plaza, A. Alcolea, M.E. Paoletti, J.M. Haut,

J.M. Resano, J.M. Resano, J.M. Resano, J

Supervised Spectral Classifiers for On-Board

Hyperspectral Inference

An Overview of Imaging 534 in Remote Sensing

2020. [CrossRef]

FPGA Accelerator for GBDT. Source Code and

Models. 2021. Alcolea, A.; Resano, J.

AdrianAlcolea/FPGA accelerator for GBDT

is available on GitHub: https://github.com/
AdrianAlcolea/FPGA accelerator for GBDT

(Accessed on January 28th)

vPipelined Decision Tree Classification

Accelerator Implementation in FPGA by F.

Saqib, A. Dutta, J. Plusquellic, P. Ortiz, and

M.S. Pattichis (DT-CAIF). IEEE Transactions
on Computers, vol. 64, no. 2, pp. 280–285.

[CrossRef]

FPGA Implementation of Decision Trees and Tree

Ensembles for Character Recognition in

VivadoHls. 15. Kuaga, R.; Gorgon, M.

Commun. 2014, 19, 71–82. Image Process.
[CrossRef]

B. Van Essen, C. Macaraeg, M. Gokhale, R.

Prenger, B. Van Essen, C. Macaraeg, C.

Macaraeg, C. Macaraeg, C. Macaraeg, C.

Macarae Multi-Core, GP-GPU, or FPGA for

Random Forest Classifier Acceleration?

232–239. In IEEE 20th International Symposium

on Field-Programmable Custom Computing

Machines, Toronto, ON, Canada, April 29–

May 1, 2012; pp. 232–239.

17. Oberg, J., Eguro, K., Bittner, R., and Forin, A.

FPGA-based random decision tree body part

recognition. The Proceedings of the 22nd

International Conference on

FPL (Field Programmable Logic and Applications)

is an international conference on field

programma

Citation: Annadasu Saiprathima et al, “Gradient Boosting Decision Trees with FPGA Accelerator”,

International Journal of Research Studies in Science, Engineering and Technology. 2019; 6(11): 74-86.

DOI: https://doi.org/10.22259/2349-476X.0611007

Copyright: © 2019 Authors. This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

https://github.com/
https://doi.org/

