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INTRODUCTION  

Decision trees are a simple and effective 
machine learning technique that have been 

proven to work in a variety of categorization 

tasks. Because energy efficiency is as 
crucial as precision in embedded systems, it 

is necessary to look for efficient algorithms 

that can be accelerated. As a result, decision 
trees are an excellent candidate for 

developing an FPGA accelerator. 

For sophisticated tasks, a single decision 

tree is typically insufficient, however 
ensemble approaches allow multiple trees to 

be combined to solve complex issues. 

Gradient Boosting Decision Trees (GBDT) 
[1] is an ensemble method for improving 

accuracy by incrementally adding new trees 

in each iteration that improve the previous 
ones' results. Traditional GBDT 

implementations have poor scaling for large 

datasets or a high number of features, 

however new efficient implementations, 
such as XCGBoost [2], CatBoost [3], or 

LightGBM [4,] have recently solved this 

issue. LightGBM, for example, is an open-
source GBDT-based framework that 

provides up to 20 times the speed of 

traditional GBDT. Due to its efficiency and 

accuracy, GBDTs are now considered one of 
the most powerful machine learning models 

thanks to LightGBM's support. For example, 

they've lately been used in a number of 

successful machine learning applications. 
They can be applied to a wide range of 

issues. For example, they have been 

successfully used to produce accurate 
COVID-19 evolution forecasts and identify 

factors that influence its transmission rate 

[6], to detect fraud from customer 

transactions [7], to estimate major air 
pollutants risks to human health [8] using 

satellite-based aerosol optical depth, and to 

classify GPS signal reception in order to 
improve its accuracy [9. Furthermore, a 

recent paper [10] examined various machine 

learning approaches for image processing in 
remote systems, with a focus on on-board 

processing, which necessitates both 

performance and low power consumption. 

The scientists discovered that GBDTs offer 
an intriguing trade-off between the 

utilisation of computing and hardware 

resources and the precision gained. Their 
accuracy scores were comparable to 

convolutional neural networks, the most 

accurate approach at the time, while 
requiring one order of magnitude less CPU 

processes. Furthermore, the majority of their 

inference operations are integer 

comparisons, which can be efficiently 
calculated even by low-power CPUs and 

quickly accelerated by FPGAs. As a result, 
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they are a viable solution for embedded 

systems. 
In this research, we describe a Gradient 

Boosting Decision Trees (GBDT) 

accelerator that can run GBDTs trained with 

LightGBM. We've set up a repository 
including the GBDT models we utilised as 

well as our source codes [11]. Our 

accelerator was created for embedded 
systems, which have limited hardware 

resources and power budgets. Hence Our 

accelerator's register-transfer level (RTL) 
design was written in VHDL, and we used it 

to demonstrate its potential in a low-cost 

FPGA evaluation board (ZedBoard) [12], 

which includes an FPGA for embedded 
systems, and we used it for the relevant case 

study analysed in [10]: pixel classification of 

hyperspectral images with the goal of 
processing the data at run-time. We analysed 

the execution time and power consumption 

of our accelerator and discovered that, even 
with a modest FPGA, our design can handle 

complex GBDT models. Our accelerator can 

process hyperspectral information at the 

same pace as the hyperspectral sensors 
create it in our case study, and the dynamic 

energy consumption is low. 

RELATED WORK 

FPGA acceleration of Decision Trees has been 

the subject of several earlier studies. The 

training processes are the centre of reference 
[13]. In our scenario, we'll suppose that 

training is done offline and that we'll 

concentrate on inference, which will be done 

online. A bespoke pipeline architecture was 
provided in reference [14], demonstrating the 

possibilities of an accelerator for decision 

trees. They do not support GBDT, however, 
and only use their methodology in basic case 

studies. To develop an FPGA accelerator, 

reference [15] offers using a high-level 
synthesis technique. They concentrate on 

Random Forest, an ensemble technique that 

calculates the average value of multiple trees 

trained with various input data to produce a 
more accurate and robust final result. We've 

made the decision to 

Another distinction is that we created a custom 
register-transfer level (RTL) architecture 

rather than relying on high-level synthesis to 

produce the RTL design from C-code. High-

level synthesis is appealing for portability and 
shortening the design cycle, but we can 

completely design the final architecture and 

investigate various sophisticated optimization 

options using our RTL design. Another study 

that examines the advantages of implementing 
Random Forest on FPGAs is reference [16]. 

They compare the performance of random 

forest classifiers on FPGAs, GP-GPUs, and 

multi-core CPUs. They conclude that FPGAs 
provide the best performance, but that due to 

the size of the forest, they do not scale. As 

previously stated, GBDT models use fewer 
trees to achieve the same results. FPGAs could 

be utilised to speed up the execution of 

decision trees in the Microsoft Kinect vision 
pipeline, which recognises human body parts 

and movements. They employ a high-

performance FPGA and achieve excellent 

results for decision trees organised as a 
random forest. They do note, however, that 

their architecture is not suitable for low-power 

FPGAs due to its memory requirements. 
Reference [18] is a recent paper that describes 

an approach for producing compact and almost 

identical representations of the original input 
decision trees. by means of threshold 

compaction The fundamental idea is to group 

comparable thresholds together to reduce the 

number of individual thresholds required, and 
then save those values as hard-wired logic. 

The size of the trees can be lowered using this 

method. This technique is diametrically 
opposed to our approach and may be 

advantageous to our design because it reduces 

the size of the trees, making storage in 

embedded devices easier. Another recent paper 
[19] examines the advantages of FPGA 

acceleration for Gradient-boosted decision 

trees. They are evaluating the Amazon cloud 
services in this situation, which include access 

to high-performance FPGAs that can be 

exploited via high-level interfaces. As a result, 
this study complements ours because it focuses 

on high-performance cloud servers, whereas 

we focus on data centres. In conclusion, earlier 

research has shown that FPGAs may be used 
to execute decision trees. The majority of these 

projects focus on Random Forest, and they 

either construct small systems or require high-
performance FPGAs. As a result, in order to 

apply these technologies in embedded systems, 

their scalability must be improved. We offer a 
GBDT-based accelerator capable of solving 

very complex models even in a small FPGA in 

this study. GBDTs have shown outstanding 

results in a variety of machine learning 
challenges, and their properties are particularly 

appealing to embedded systems. As a result, 

we developed a hardware accelerator for 
FPGAs with the goal of executing 



Gradient Boosting Decision Trees with FPGA Accelerator 

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019       76 

sophisticated models based on GBDT in low-

cost, low-energy devices. In order to 
demonstrate. 

DECISION TREES WITH GRADIENT 

BOOSTING 

A Decision Tree is a decision method that 

generates its result using a tree-like paradigm. 

It can be viewed as a means of displaying an 
algorithm with only conditional control 

statements. In a binary tree structure, each 

tree's decision is based on a sequence of 

comparisons connected between them. Each 
leaf node includes the outcome of the 

prediction [20], whereas each internal node 

indicates a comparison needed to determine 
the next node. When decision trees are used to 

solve classification problems, each tree leaf is 

labelled with the anticipated class, a 

probability for that class, or a probability 
distribution across all classes. Figure 1 depicts 

the use of a Decision Tree to solve a sequence 

of problems. First, this tree compares the value 
of feature 4 of the input to 20; when the input 

value decreases, it moves to the left child and 

repeats the process until it reaches the leaf 
with the output value of 0.3. 

 
 

One of the advantages of Decision Trees over 

other techniques is that no input preprocessing 
is required, such as data normalisation, 

scaling, or centering. They work with the input 

data in its current state [20]. The reason for 

this is that features are never blended together. 
As shown in Figure 1, the trees compare the 

value of an input feature to another value of 

the same feature in each comparison. As a 
result, multiple scales can be applied to 

various aspects. Other Machine Learning 

models combine characteristics to produce a 
single value; as a result, if their values are of 

various orders of magnitude, some features 

will initially dominate the outcome. This can 

be corrected during the training process, but in 
order to speed up training and increase results, 

normalisation will be required. Because 

avoiding normalisationminimises the number 
of run-time computations required, it's a 

particularly appealing feature for embedded 

systems. Furthermore, the magnitude of the 

input data has no bearing on the model's size 

or computations. As a result, dimensionality 

reduction techniques like Principal Component 
Analysis aren't required to shrink the model. 

This is also highly useful for embedded 

systems because it significantly minimises the 

amount of computing required during 
inference. During training, the most important 

attributes are chosen and employed for the 

tree's comparisons. As a result, features with 
more information will be employed more 

frequently in comparisons, whereas 

characteristics that do not provide helpful 
information for the classification problem will 

be omitted. This is an intriguing feature of this 

algorithm because, based on the same feature 

selection decisions made during training, we 
may easily repeat the process. This means that 

Decision Trees may be used to determine 

which features provide more useful 
information, and that this information can then 

be used to train even smaller models that retain 

the majority of the information while requiring 

less memory. 



Gradient Boosting Decision Trees with FPGA Accelerator 

77    International Journal of Research Studies in Science, Engineering and Technology    V6 ● I11 ● 2019 

Nonetheless, for complex categorization tasks, 

a single Decision Tree does not deliver reliable 
answers. The approach is to employ an 

ensemble method, which aggregates the 

findings of multiple trees to enhance accuracy 

levels. Gradient Boosting is an ensemble 
method that integrates the outcomes of various 

predictors in such a way that each tree tries to 

improve on the preceding one's results. The 
gradient boosting approach entails training 

predictors in a sequential manner, with each 

subsequent iteration attempting to fix the 
residual error caused in the preceding iteration. 

In other words, each predictor is taught to 

correct the residual error of the one before it. 

The trees can then be utilised for prediction by 
simply adding the results of all the trees [20]. 

Designers can also use the GBDT model to 

trade off accuracy for computation and model 
size. If a GBDT is trained for 100 iterations, 

for example, it will produce 100 trees for each 

class. The designer might then choose whether 
or not to use all of them or to discard the final 

ones. Similar trade-offs can be seen in other 

machine learning methods, such as lowering 

the number of convolutional layers in a 
convolutional neural network (CNN). 

However, in that instance, each conceivable 

design must be retrained, but with GBDT, only 
one design must be retrained. Again, this is 

ideal for embedded systems since we can vary 

the model size based on memory resources, as 

well as execution time and power consumption 

constraints. 
In terms of computation, the inference process 

in most machine learning algorithms 

necessitates a large number of floating point 

operations. CNNs and multilayer perceptrons 
(MLPs), for example, are built using floating-

point multiply-accumulate operations. 

Calculating a tree's output, on the other hand, 
merely requires a few comparisons. All of 

these comparisons will only use numbers if the 

input data is integers, as it is with pixels in an 
image. This considerably decreases the 

computational load. In certain circumstances, 

the sole floating point operation will be the 

aggregation of each tree's outputs. As a result, 
each tree will only have one floating point 

addition. These improvements can be 

substituted in embedded systems by fixed 
precision operations, allowing the entire model 

to be executed even in systems without 

floating point units. 

DESIGN ARCHITECTURE 

For classification tasks, LightGBM employs a 

one-vs-all technique, which entails training a 
separate estimator (i.e., a set of trees) for each 

class, with each one predicting the same 

thing.The likelihood of belonging to that 

group. Each class has its own private trees in 
this technique, and the likelihood of belonging 

to a certain class is calculated by summing the 

results of the trees, as shown in Figure 2. 

 

 
 

As a result, each class is independent of the 

others during inference, and the trees of each 

class can be studied in parallel. By providing 
one particular module for each class, our 

accelerator takes use of this parallelism. 

It is critical to optimise memory resources 

when designing an efficient accelerator. To 

reduce data transfers to the external memory, 

we want to store the trees in the FPGA's on-

chip memory resources. However, because 
those resources are limited, optimising the 

format used to store the trees in order to 

reduce their memory requirements is a major 

part of the design. All of a class's trees are 
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stored in the trees nodes RAM memory, which 

is unique to the class module. The format we 
used to store the tree structure on this memory 

is shown in Figure 3. Our goal is to fit all of 

the information about each node into a 32-bit 

word. This word size can be increased or 
decreased as needed because our code uses 

generic parameters. However, in our tests, we 

found that 32 bits provided a fair balance 
between tree representation accuracy and 

storage requirements. These 32 bits are 

formatted differently depending on whether 
they are leaf nodes or not. There are four fields 

in the non-leaf format. The first and second 

fields record the information needed to 

perform the comparison, such as which input 
(8 bit) will be utilised and which value will be 

compared (16 bit). The addresses of the child 

nodes must then be saved. It is not possible to 
save its exact addresses because we only have 

8 bits left. In fact, given the size of the 

memories we're employing, we'd require 
nearly all of the 32-bits to hold that data. We 

came up with two strategies to fix this 

problem. To begin, nodes are stored in the 

trees nodes memory using the pre-order 
traversal approach, which means that the left 

child of a non-leaf node is always allocated. 

The address of the left child does not need to 

be kept in this method because it may be 
acquired by adding one to the current address. 

As a result, we just need to save the address of 

the correct child. Second, rather than keeping 

the right child's absolute address, we store a 
relative address that specifies its distance from 

the current address. A 7-bit field is used to 

store the relative distance. The greatest depth 
of a tree using this method is 128. This is more 

than adequate for all of the trees we've looked 

at, as GBDT doesn't rely on really massive 
trees, but rather on a vast number of them. 

Finally, we've included a flag in each node's 

less significant bit: This In our tests, 14 bits 

were sufficient for absolute addresses. The 
LightGBM GBDTs' initial output is a 32-bit 

floating point number. In our research, 

however, we get similar accuracy using a 16-
bit fixed-point representation. In any case, by 

utilising relative addresses for the @next tree 

field instead of absolute addresses, it is 
possible to use additional bits for the output 

without increasing the size of the memory 

word. The last two bits are two flags that 

indicate if this is the class's final tree and 
whether or not the node is a leaf. 

 

 
 

Figure 4 shows a simple example of storing 

two trees of the same class. As seen in the 

diagram, the first tree's root node is stored at 
address 0. Then, following these same criteria 

recursively, the full tree structure 

corresponding to its left child is stored, and 
ultimately, the right child is stored last. The 

relative leap to its right child is stored in the 

bits corresponding to the rel@ right child field. 

The first tree's leaf nodes all indicate that the 

following tree starts at address 5. Finally, the 
second tree's leaf nodes signal that there are no 

more trees to be processed. There are eight 

nodes in this simple example. We will be 
successful if we implement it in our 

architecture. 
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The internal design of one of the modules that 

executes a class's trees is shown in Figure 5. A 

register, as well as the previously mentioned 
trees nodes RAM memory, are included in the 

design. last node is used to hold the address of 

the most recently visited node, as well as the 

logic that performs comparisons, computes the 

next node to visit, and accumulates the tree 
results. 

 
The  feature field of non-leaf nodes is utilised 

in this design to select one feature from all of 
the system's input features. The cmp value 

field is compared to the selected feature. If the 

feature's value is less than or equal to the cmp 

value, the non-leaf node's left child is chosen. 
To accomplish this, we increase the value of 

@ last node by one. Otherwise, the rel@ right 

child is used to choose the correct child. If the 
current node is a non-leaf (is leaf value is 0), 

this will generate the @ node that will be used 

to address the trees nodes RAM memory. If 
the current node is a leaf (is leaf = 1) but not 

the last tree (is last tree = 0), the Because we 

dedicate 14 bits to the @ next tree, the 

maximum size of the trees nodes RAM will be 
214 words, and the theoretical maximum 

number of nodes in the same tree will be 26 

due to the size of the relative jump rel@ right 

child, the maximum size of the trees nodes 
RAM will be 214 words. In terms of RAM 

capacity, we could address any number of 

trees by making @ next tree a relative address 
from the current node and adding it to @ last 

node, but the current size is significantly larger 

than our requirements. We use the 13 least 
significant of the 14 significant bits in our 

design to assign 8 BRAMs of 32 Kb to the 
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trees of each class, resulting in 8192 words of 

32 bits. We simply need to wait till every class 
module has completed before checking the 

output of the argmax module, which selects 

the best pixel, once we have received the 

features of one pixel.The number of students 

in the class receiving the best grade. Figure 6 

shows a simplified version of the accelerator 
that demonstrates this behaviour, omitting the 

control lines and communications 

management. 

 
We simply need to wait till every class module 

has completed before checking the output of 

the argmax module, which selects the best 

pixel, once we have received the features of 
one pixel. The number of students in the class 

receiving the best grade. Figure 6 shows a 

simplified version of the accelerator that 
demonstrates this behaviour, omitting the 

control lines and communications 

management. Each clock cycle, this 

architecture can process one node per class. 
However, in our tests, if we construct a system 

that consumes the majority of the on-chip 

memory resources, the place&route procedure 

becomes complicated, and the clock frequency 

drops to 55 MHz. This can be fixed by 

utilising a more current FPGA with greater 

capacity and better integration technology, but 
it may also be improved by using computer 

architecture optimization techniques similar to 

those used to enhance the execution of 
general-purpose processors. The following 

diagrams will help to demonstrate this point. 

The execution of the previously stated version 

is shown in Figure 7a (single-cycle 
implementation). The execution of the nodes 

in one of the classes is depicted in the diagram. 

If we work together, we can 

 
Our goal is to increase the processing speed 

while maintaining one node each cycle. We 

devised a multi-cycle approach to minimise 

the clock cycle. We looked at three alternative 

clock cycle options: two, three, and four. 

Additional registers have been added to the 

design in these versions in order to separate 

the longest combinational paths. We chose the 
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version that executes the nodes in three cycles 

based on that study because it achieves a 
significant clock-period reduction while also 

providing a clear architecture that makes it 

easy to identify the operations that are carried 

out in each cycle. The benefits of four cycles 
were minimal, and the resulting execution 

pattern was not obvious. The results are shown 

in Figure 7b. The clock frequency has been 
improved, as shown in the diagram, but the 

system is still slower than before because each 

node requires three clock cycles. However, 
since the architecture has been partitioned in a 

logical manner, we may try a pipeline method. 

We have three different pipeline phases, as 

shown in Figure 8a, and each one consumes 
various hardware resources. As a result, as 

soon as the first node completes the first stage, 

we can begin executing a second node. The 
first stage in our design is to read the node 

(fetch), the second step is to identify the kind 

of node and read the required feature (decode), 
and the final step is to write the code. The 

problem with this technique is that we don't 

know which node will come next until the 

preceding node has completed its execution 
stage. As a result, we won't be able to get it 

ahead of time. As a result, a basic pipeline will 

be of little use. This is the same issue that 
traditional processors have when dealing with 

conditional branches in instructions. High-

performance processors solve this problem by 
including complex support for speculative 

execution. However, this is not an efficient 

solution for embedded systems because it adds 

significant energy overheads, and it won't 
produce good results unless clear patterns for 

branch predictions can be identified. As a 

result, there is no simple way to benefit from 
the pipeline architecture. 

 

 
However, by combining the pipeline with a 
multi-threading technique, this problem can be 

alleviated. The concept is to incorporate 

functionality to allow the execution of three 
distinct trees to be interleaved. Three @ last 

node registers can be used to accomplish this 

(that is the same as having three programme 
counters in a processor). A class's trees are 

separated into three sets, and each counter is in 

charge of one of these sets. Figure 8b 

demonstrates how the three trees' executions 
are interleaved. Three distinct trees (n, m, and 

l) are used in this example. We have the same 

time with this approach as with the multi-cycle 
approach, and we may execute one node every 

cycle, just like with the single-cycle 
implementation. 

Figure 9 depicts the multi-threaded class 

module's final structure. The hardware 
overhead is minimal, as shown in the diagram. 

We only need a few registers to store the 

information needed for each stage, the 
additional @ last node counters, two additional 

registers indicating the starting address of the 

first tree in each set, three 1-bit registers 

indicating whether the processing of each set 
has been completed, and finally modify the 

control unit. Furthermore, both versions have 

the same memory resources, which are the 
most important in our design. 
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DATASET AND MODELS 

Hundreds of spectral bands make up 

hyperspectral photographs, with each band 

capturing the responses of ground objects at a 
specific wavelength. As a result, each image 

pixel can be thought of as a spectral signature, 

as seen in Figure 10. Machine learning 

approaches, as discussed in [10], can classify 
pixels in hyperspectral images with high 

accuracy. Convolutional neural networks 

produced the most effective outcomes. 
However, because to the large size of 

hyperspectral images, it is a computationally 

costly process that cannot be used in on-board 
systems with limited resources. This study 

discovered that GBDTs present a highly 

intriguing trade-off between the usage of 

computing and hardware resources and the 

accuracy acquired, because it achieved high 
accuracy rates while carrying out the task. Our 

goal is to attain the same accuracy results as 

those described in [10] while running the trees 

through our accelerator, which is based on a 
tiny FPGA. We also want to process the pixels 

at the same rate as they are created by the 

hyperspectral sensors as a secondary goal. 
The input for hyperspectral picture pixel 

classification is a single pixel made up of a 

series of characteristics, each of which is a 16-
bit integer. The amount of features in a picture 

is determined by the sensor used to capture it; 

in our case, we employed datasets with 103 to 

224 features. Each node in the tree chooses 
one of these characteristics and compares it to 

the value stored in the node to determine 

whether to choose the left or right child. 
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Our design was created in VHDL with generic 

parameters to allow for a lot of customization. 
As a result, it may be applied to a variety of 

images with varying numbers of classes, input 

features, and trees per class... Table 1 

summarises the main characteristics of the 
hyperspectral images analysed, Indian Pines 

(IP), Kennedy Space Center (KSC), Pavia 

University (PU), and Salinas Valley (SV), as 
well as the GBDT model configuration chosen 

based on those presented in [10], which 

analysed the various GBDT parameters and 
chose the best in each case. The table displays 

the number of features (ft.) and classes (cl.) in 

each image, as well as the total number of 

trees employed (trees), as well as several 
essential model parameters used to train the 

models, such as the minimum number of trees. 

Finally, it shows the accuracy gained using the 

LightGBM library to execute the models in 
[10], as well as the accuracy reached using 

identical models customised for our 

accelerator. The adjustments in the initial 
decision trees have essentially no influence on 

the final accuracy, as seen in the table. 

[11] contains the models that have been 
codified using the node representation format 

specified. 

 

 
 

EXPERIMENTAL RESULTS 

The accelerator was created to fit in the FPGA 

of the Zedboard Xilinx Zynq-7000 evaluation 

board (Digilent, Hong Kong, China) [12]. 
Because this is a relatively small FPGA with 

outdated technology, the design requirements 

are fairly limited. The major purpose of 
employing this device is to replicate the 

properties of rad-hard and rad-tolerant FPGAs 
that have been certified for embedded on-

board devices. Because these devices do not 

use the most up-to-date integration technology, 
using the most recent generation of FPGAs 

will be impractical. The hardware resources of 

single-cycle and multi-threading designs in 
this FPGA are shown in Table 2. 

 
The amount of LUTs and Flip-Flops is the 
only discernible increase; the rest is null or 

minor. The design doesn't care about these 

increments because it only uses a small portion 

of these resources. The on-chip memory 

resources are the system's bottleneck, as seen 
in the table. In fact, some photos consume 

nearly all of the available RAM. As a result, it 

was critical to optimise the memory format for 

storing the trees. 
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The performance results are shown in Table 3. 

In this example, the multi-threaded 
architecture improves speed by 67–85 percent. 

As a result, the computer architecture 

modifications in this accelerator deliver a 

significant performance boost at a low space 
cost. The Multi-threaded design incurs a slight 

penalty in terms of the number of cycles 

required to process each node (Avg. 
Cycles/Node), resulting in a greater number of 

cycles per pixel (Avg. Cycles/px.). The reason 

for this is that the trees are separated into three 
groups, each of which will not be properly 

balanced at all times. Only two of the three 

threads have useful work when one of the sets 

finishes. To alleviate this issue, we divided the 
trees into groups based on their average depth, 

attempting to balance the burden across all 

groups. We can't guarantee a perfect balance 
because the depth of the trees depends on the 

path picked and will be different for each 

input, thus these modest penalties arise. In 
terms of communications, we've implemented 

a DMA to read the input data from the external 

off-chip memory in our design. Because the 

latency of transferring one pixel's input data is 
less than the computation itself, it can be 

completely overlapped with the processing 

time of the preceding input data and has no 

effect on throughput. 
We ran the inference of the models described 

in [10] in a high performance (HP) CPU, an 

Intel(R) Core(TM) i5-8400 CPU @ 2.80GHz 

(Intel Corporation, Santa Clara, CA, USA), as 
well as an embedded system (ES) CPU, the 

Dual-core ARM Cortex-A9 @ 667 MHz (Arm 

Ltd., Cambridge, England) that is part of the 
same system-on-a-chip. gcc 7.3.1 was used to 

compile this code, with the -O3 optimization 

setting. Table 4 displays the total energy 
required for each image to complete the entire 

test set, as well as the performance in pixels 

per second. These tests were carried out using 

a Yokogawa WT210 digital power metre, 
which has been approved by the Standard 

Performance Evaluation Corporation (SPEC) 

for power efficiency benchmarking [21]. Only 
the dynamic energy consumption, i.e. the 

consumption caused by the trees' execution, is 

included in the table. To that aim, we 
examined the power consumption of the 

FPGA, Cortex-A9, and i5-8400 for five 

minutes, both in idle mode and during the 

execution of the models, and calculated the 
average increase in power consumption from 

those measurements. 
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According to these findings, the HP CPU execution consumes 72 times more energy than the FPGA 

design when doing test bench inference, despite the fact that the FPGA design is twice as quick. The 
ES CPU consumes 23 times more energy than the FPGA architecture while being 30 times faster. The 

last comparison is particularly intriguing because this processor is on the same chip as the FPGA, uses 

the same main memory, and runs at a nearly seven-fold quicker speed. This highlights the 
performance and energy efficiency advantages of a bespoke accelerator. Finally, one of our goals was 

to analyse the pixels at the same rate as they were produced by the hyperspectral sensors. According 

to [22], the AVIRIS sensor used to collect the majority of our datasets needs to process 62, 873.6 

pixels per second to attain complete real-time performance. Ourmulti-threading design achieves 
this speed in three of the four images (KSC, PUandSV), and achieves 98.4% of that speed in a third 

one(IP). Hence, wecanconcludethatthisdesigniscapableofachievingreal-timeperformancein 

many scenarios even using a small FPGA. 

CONCLUSION 

GDBT is a machine learning model with a lot 

of power. Because its main operations are 
simple comparisons, its properties make it 

particularly well suited to being accelerated in 

FPGAs. Memory constraints were a major 

consideration in the accelerator's design. The 
key to allowing sophisticated models to be 

implemented in small FPGAs has been 

optimising the format used to store the trees. 
Furthermore, after examining our accelerator's 

execution, we discovered a pipeline and multi-

threading execution scheme that maximises 
FPGA resource consumption and produces a 

67–85 percent speed gain over single-cycle 

execution. For a relevant case study, we tested 

our accelerator with complex models and 

demonstrated that it can handle data at high 

speeds. with a very low power usage overhead 
during runtime Furthermore, when compared 

to LightGBM execution on a high-performing 

CPU, our model achieves 2x performance 
while consuming 72x less energy. In the 

instance of an embedded system CPU, our 

solution improves performance by 30 times 
while consuming 23 times less energy during 

execution. As a result, this architecture is ideal 

for high-performance embedded systems, 

which was our initial goal.  
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