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OVERVIEW 

Reinforcement learning (RL) is a learning 

issue as well as a machine learning subfield. It 

refers to learning to operate a system in order 

to maximise some numerical value that 

indicates a long-term goal as a learning 

problem. Figure 1 depicts a typical situation in 

which reinforcement learning takes place: A 

controller is given the state of the controlled 

system as well as a reward for the most recent 

state shift. It then calculates and sends back an 

action to the system. The system responds by 

transitioning to a new state, and the cycle 

begins again. The challenge is to figure out 

how to regulate the system in such a way that 

the total reward is maximised. The details of 

how the data is obtained and how performance 

is judged differ between the learning 

challenges. 

We assume in this book that the system we 

want to govern is stochastic. Furthermore, we 

assume that the measurements of the system's 

state are sufficiently detailed for the controller 

to avoid having to reason about how to acquire 

information about the system state. Markovian 

Decision Processes are the ideal framework for 

describing problems with these properties 

(MDPs). Dynamic programming, which turns 

the challenge of finding a good controller into 

the problem of finding a good value function, 

is the typical method for'solving' MDPs. 

However, except in the simplest circumstances 

when the MDP has a small number of states 

and actions, dynamic programming is not 

recommended. 

The challenge of finding a good controller is 

transformed into the problem of finding a good 

value function. Dynamic programming, with 

the exception of the simplest scenarios when 

the MDP has a small number of states and 

actions, is not possible. The RL algorithms 

we'll talk about here are a technique of turning 

infeasible dynamic programming methods into 

workable algorithms that may be used to solve 

large-scale issues. 

The ability of RL algorithms to achieve this 

goal is based on two essential concepts. The 

first approach is to use samples to express the 

dynamics of the control problem in a concise 

manner. This is significant for two reasons: 

first, For starters, it enables dealing with 

learning circumstances in which the dynamics 

are uncertain. Second, even if the dynamics 

are favourable, The use of sophisticated 
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function approximation methods to compactly 

describe value functions is the second 

important notion behind RL algorithms. This 

is significant because it enables for the 

manipulation of huge, high-dimensional state 

and action spaces. Furthermore, the two 

concepts are complementary: Samples may be 

concentrated on a tiny subset of the spaces to 

which they belong, which creative function 

approximation techniques could exploit. The 

heart of creating, assessing, and using RL 

algorithms is an understanding of the interplay 

between dynamic programming, sampling, and 

function approximation. 

 

The goal of this book is to provide the 

reader with a glimpse into this lovely field. 

We are, however, far from the first to set out 

to achieve this goal. In The book Bertsekas 

and Tsitsiklis (1996), which explored the 

theoretical basis, was published after that. 

Sutton and Barto, the RL'fathers,' published 

their book a few years later, in which they 

expressed their ideas on RL in a very clear 

and approachable manner (Sutton and Barto, 

1998). Bertsekas' two-volume book 

(2007a,b), which devotes one chapter to RL 

approaches, provides a more modern and 

complete review of the tools and techniques 

of dynamic programming/optimal control. 1 

When a field is fast evolving, books might 

become out of date very quickly. In fact, 

Bertsekas maintains an online version of 

Chapter 6 of Volume II of his book to keep 

up with the rising body of new findings. 

Chang et al. (2008) concentrates on adaptive 

sampling (i.e., simulation-based 

performance optimization), whereas 

Busoniu et al. (2010) recently published a 

book on function approximation. As a result, 

RL researchers have access to a substantial 

body of literature. What appears to be 

lacking, however, is a self-contained and yet 

relatively brief summary that can assist 

newcomers to the field in developing a good 

sense of the state of the art, as well as 

existing researchers in broadening their field 

overview, an article similar to Kaelbling et 

al. (1996), but with updated contents. This 

small book's sole objective is to fill this 

void. We had to make a few, hopefully not 

too troubling compromises in order to keep 

the content short. We originally made a 

compromise by simply presenting data for 

the total expected discounted reward 

criterion. This decision is driven by a 

number of factors. The background on 

MDPs and dynamic programming is kept 

ultra-compact as the next compromise 

(although an appendix is added that explains 

these basic results). Apart from that, the 

book strives to cover a little bit of 

everything related to RL, to the point that 

the reader should be able to comprehend the 

whats and hows, as well as apply the 

algorithms provided. Naturally, we had to be 

picky about what we showed. The choice 

was made to concentrate on the fundamental 

algorithms, ideas, and theories accessible at 

the time. The user's choices, as well as the 

compromises that come with them, were 

described with special care. We tried to be 

as objective as possible, but some personal 

issues came up. 

Advanced undergraduate and graduate 

students, as well as academics and 

practitioners who want a brief review of the 

state of the art in RL, are the intended 

audience. Researchers who are currently 

working on RL may find it interesting to 

read about aspects of the literature that they 

are unfamiliar with, in order to widen their 

RL perspective. It is assumed that the reader 

is familiar with the fundamentals of linear 
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algebra, calculus, and probability theory. 

We presume that the reader is familiar with 

random variables, conditional expectancies, 

and Markov chains, among other ideas. The 

reader should be familiar with statistical 

learning theory, although it is not required, 

as the main concepts will be explained as 

needed. Knowledge of machine learning 

regression techniques will be relevant in 

several portions of the book. 

This book is divided into three sections. We 

offer the essential background in the first 

section, Section 2. The notation is 

introduced here, followed by a brief 

explanation of Markov Decision Process 

theory and a discussion of the fundamental 

dynamic programming techniques. Readers 

who are familiar with MDPs and dynamic 

programming should scan through this 

section to get a feel for the notation. Readers 

who are unfamiliar with the subject. When it 

comes to MDPs, it's important to spend 

enough time here before going on because 

the rest of the book is mainly based on the 

findings and ideas offered here. The 

remaining two components are divided into 

two pieces, one for each of the two basic RL 

issues (see Figure 2). The difficulty of 

learning to predict values linked with states 

is examined in Section 3. We begin by 

outlining the fundamental concepts for the 

so-called tabular scenario, in which the 

MDP is small enough that one value per 

state may be stored in an array created in the 

main memory of a computer. The first 

algorithm discussed is TD(, which can be 

seen of as a learning equivalent to dynamic 

programming's value iteration. Following 

that, we analyse the more difficult issue in 

which there are more states than can be 

stored in a computer's memory. Clearly, the 

table holding the values must be compressed 

in this scenario. In a broad sense, this 

Following that, three new gradient-based 

approaches (GTD2 and TDC) are described, 

which can be thought of as enhanced 

versions of TD() in that they avoid some of 

the convergence issues that TD() has. The 

least-squares approaches (namely, LSTD() 

and -LSPE) are next discussed and 

compared to the incremental methods 

outlined above. Finally, we discuss the 

various options for implementing function 

approximation as well as the tradeoffs that 

these options entail. 

The second section (Section 4) is devoted to 

control learning algorithms. First, we'll go 

through some strategies for improving 

online performance. We present the 

"optimism in the face of uncertainty" 

principle in particular, as well as ways for 

exploring their environment based on it. 

Algorithms that are cutting-edge are The 

remainder of this section is focused to 

strategies aimed at developing methods for 

large-scale applications. Because learning in 

large-scale MDPs is more challenging than 

learning in small-scale MDPs, the learning 

aim is lowered to learning a good enough 

policy in the limit. To begin, direct 

approaches are explored, which try to 

directly estimate the optimal action-values. 

These can be thought of as the learning 

analogue of dynamic programming's value 

iteration. The description of actor-critic 

approaches follows, which can be 

considered of as the dynamic programming 

counterpart of the policy iteration process. 

Both direct policy improvement and policy 

gradient (i.e., using parametric policy 

classes) strategies are discussed. 
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MARKOV DECISION PROCESSES 

The objective of this section is to introduce the 

notation that will be used in the following 

sections, as well as the most important facts 

from the theory of Markov Decision Processes 

(MDPs) that we will need throughout the rest 

of the book. Readers who are already familiar 

with MDPs should scan through this part to 

get a feel for the notation. Readers who are 

unfamiliar with MDPs should devote enough 

time to this section to grasp the details. 

Appendix A contains proofs of the majority of 

the results (with some simplifications). If you 

want to understand more about MDPs, you 

should read one of the many good works on 

the subject, such as Bertsekas and Shreve 

(1978), Puterman (1994), or the two-volume 

book by Bertsekas and Shreve. 

Preliminaries 

The set of natural numbers is denoted by N: N 

= 0, 1, 2, etc., whereas the set of real numbers 

is denoted by R. A column vector is denoted 

by the symbol v (unless it is transposed, in 

which case it is denoted by vT). (u, v) = d uivi 

is the inner product of two finite-dimensional 

vectors, u, v Rd. ||u||2 =(u, u). ||u||a = 

maxi=1,...,d |ui| defines the maximal norm for 

vectors. while f = supxX |f (x)| is the definition 

of a function f: X R. Lipschitz with modulus L 

R is a mapping T across the metric spaces 

(M1, d1), (M2, d2) if for each a, b M1, d2(T 

(a), T (b)) Ld1 (a, b). T is Lipschitz if the 

modulus L is less than one is referred to as 

Markov Decision Processes 

We limit our discussion to countable MDPs 

and the discounted total anticipated reward 

requirement for clarity. The results, however, 

also apply to continuous state-action MDPs 

under certain technical conditions. This is also 

true of the findings reported in the book's later 

chapters. A countable MDP is defined as M = 

(X, A, P0), where X denotes the countable 

non-empty set of states and A is the countable 

non-empty set of actions. P0( |x, a) P0( |x, a) 

P0( |x, a) P0( |x, a) P0( |x, a) P0( |x, a) P0( |x, 

a) P0( |x, a) P0( |x, a) P0( |x, a) P0( |x, a) P0( 

|x, a) P0( |x The following is P0's semantics: 

P0(U|x, a) yields the chance that the next state 

and the next state and the next state and the 

next state and the next state and the next state 

and the next state and the next state and the 

next state and the next state and the next state 

and the next state and the next state. For 

clarity, we will only address countable MDPs 

and the discounted total projected reward 

need. However, under specific technical 

conditions, the results also apply to continuous 

state-action MDPs. This holds true for the 

conclusions presented in the book's subsequent 

chapters. 

M = (X, A, P0) is a countable MDP, with X 

being the countable non-empty set of states 

and A denoting the countable non-empty 

collection of actions. |x, a) P0(|x, a) P0(|x, a) P 

|x, a) P0(|x, a) P0(|x, a) P |x, a) P0(|x, a) P0(|x, 

a) P |x, a) P0(|x, a) P0(|x, a) P |x, a) P0(|x, a) 

P0(|x, a) P P0(|x, a) P0(|x, a) P0(|x, a) P0(|x, a) 

P0(|x, a) P0(|x, a) P0(|x, a) P0(|x, a) P0(|x, 

P0(|x, a) P0(|x, a) P0(|x, a) P0(|x, a) P0(|x, a) 

P0(|x, a) P0(|x, a) P0(|x, a P0's semantics are 

as follows: P0(U|x, a) gives the probability 

that the next state and the next state will occur. 

P(x, a, y) = P0({y} × R | x, 

a). 

In addition to P, P0 also gives rise to the 

immediate reward function r :  X × A → R, 

whichgivestheexpectedimmediaterewardrec

eivedwhenactionaischoseninstatex:If 

(Y(x,a),R(x,a))∼P0(·|x,a),then 

r(x, a) = E 
Σ

R(x,a)

Σ 
. 

We'll assume that the rewards are bounded by 

some number R > 0 in the following: for any 

(x, a) X A, |R(x,a)| R virtually certainly. 3 It 

follows that if the random rewards are 

constrained by R, then r = sup(x,a)X A |r(x, a)| 

R also holds. If both X and A are finite, the 

MDP is called finite. 

Markov Decision Processes are a modelling 

method for sequential decision-making 

situations in which a decision maker interacts 

with a system in a sequential manner. This 

interaction occurs when an MDP M is used: 

Let t N be the current time (or stage), and Xt X 

be the current state. 

The random state of the system and the action 

taken by the decision maker at time t are 

denoted by and At A, respectively. Once the 

action has been chosen, it is submitted to the 

system, which performs the following 

transition: 

(Xt+1,Rt+1)∼P0(·|Xt,At). (1) 

Xt+1 is a random number, and P (Xt+1 = y|Xt 

= x, At = a) = P(x, a, y) holds for any x, y X, 

an A. In addition, E [Rt+1|Xt, At] = r (Xt, At). 

After that, the decision maker observes the 
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next state Xt+1 and rewards Rt+1, selects a 

new action At+1 A, and repeats the process. 

The decision maker's purpose is to devise a 

method of selecting actions that maximises the 

projected total discounted reward. 

Based on the observed past, the decision 

maker can choose its actions at any time. A 

behaviour is a rule that describes how the 

actions are chosen. A random state-action-

reward sequence is defined by the decision 

maker's behaviour and some beginning 

random state X0. and At∈ A denote the random 

state of the system and the action chosen by 

the decision maker at time t, respectively. 

Once the action is selected, it is sent to the 

system, which makes a transition: 

                                   

(Xt+1,Rt+1)∼P0(·|Xt,At). (1) 

In particular, Xt+1 is random  and  P (Xt+1= 

y|Xt= x, At= a)  = P(x, a, y) holds  for  any 

x, y ∈ X , a ∈ A. Further, E [Rt+1|Xt, At] = 

r(Xt, At). The decision maker then observes 

the next state Xt+1 and reward Rt+1, chooses a 

new action At+1∈A and the process is 

repeated. The goal of the decision maker is 

to come up with a way of choosing the 

actions so as to maximize the expected total 

discounted reward. 

Based on the observed past, the decision 

maker can choose its actions at any time. A 

behaviour is a rule that describes how the 

actions are chosen. A random state-action-

reward sequence ((Xt, At, Rt+1); t 0) is 

defined by a decision maker's behaviour and 

an initial random state X0, where (Xt+1, 

Rt+1) is connected to (Xt, At) by (1) and At 

is the action prescribed by the behaviour 

based on the history X0, A0, R1,..., Xt1, 

At1, Rt, Xt. 4 The whole discounted sum of 

the benefits incurred is defined as the return 

underlying a behaviour:  

∞ 

R= γtRt+1. 

t=0 

As a result, if 1, incentives received in the 

future will be valued exponentially less than 

those obtained at the beginning. A discounted 

reward MDP is one in which the return is 

defined by this formula. The MDP is said to be 

undiscounted when it equals 1. 

Regardless of how the process begins, the 

decision-purpose maker's is to adopt a 

behaviour that maximises the expected return. 

It is argued that such maximising behaviour is 

optimal. Example 1 (lost sales and inventory 

control): Consider the difficulty of maintaining 

day-to-day inventory control in the face of 

fluctuating demand: Every evening, the 

decision maker must determine the number of 

goods to be ordered for the following day. The 

ordered quantity arrives in the morning, and 

the inventory is replenished. Some stochastic 

demand is realised during the day, where the 

demands are independent and have a similar 

fixed distribution, as shown in Figure 3. The 

inventory manager's purpose is to manage the 

inventory in such a way that the present 

monetary worth of the predicted total future 

income is maximised. 

At time step t, the payment is calculated as 

follows: The cost of purchasing At items is 

calculated as KIAt>0 + cAt. As a result, there 

is a fixed entry fee K. proportionality factor h 

> 0 of the inventory Finally, when z units are 

sold, the manager gets paid the sum of p z, 

where p > 0. We need p > h to make the 

challenge interesting; otherwise, there will be 

no motivation to order new products. 

As an MDP, this problem can be expressed as 

follows: Allow the size of the inventory in the 

evening of day t 0 to be the state Xt. As a 

result, X = 0, 1,..., M, with M N being the 

maximum inventory size. The action At 

returns the number of products ordered on day 

t's evening. As a result, we can choose A = 0, 

1,..., M because orders larger than the 

inventory do not need to be considered. 

              Xt+1 = ((Xt+ At) ∧ M−Dt+1)+, (2) 

where a ∧ b is a shorthand notation for the 

minimum of the numbers a, b, (a)+ = a ∨0 = 

max(a, 0) is the positive part of a,  and 

Dt+1∈N  is the demand on the (t + 1)thday.  

By assumption, (Dt; t >0) is a sequence of 

independent and identically distributed 

(i.i.d.) integer-valued random variables. The 

revenue made on day t  
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t 

 

One of the many operations research 

challenges that leads to an MDP is inventory 

control. Other issues include transportation 

system optimization, timetable optimization, 

and production optimization. Many 

engineering optimal control issues, such as the 

optimal control of chemical, electrical, or 

mechanical systems, naturally involve MDPs 

(the latter class includes the problem of 

controlling robots). MDPs can be used to 

illustrate a variety of information theory 

challenges (e.g., optimal coding, optimising 

channel allocation, or sensor networks). 

Finance is another significant source of issues. 

Optimal portfolio management and option 

pricing are examples of these. 

 

The MDP was readily specified by a transition 

function f (cf., (4)) in the instance of the 

inventory control problem. In fact, transition 

functions are as powerful as transition kernels: 

any MDP gives rise to some transition 

function f, and any MDP gives rise to some 

transition function f. 

Not all acts are important in all states in some 

problems. Ordering more things than one has 

place for in the inventory, for example, is 

counterproductive. Such meaningless (or 

forbidden) acts, on the other hand, can always 

be remapped to other actions, as seen above. 

This is unnatural in some circumstances and 

leads to a tangled web of dynamics. Then it 

could be a good idea to add an extra mapping 

that assigns the set. Some statuses are 

impossible to depart in some MDPs: If x is 

such a state, Xt+s = x virtually certainly holds 

for any s 1 as long as Xt = x, regardless of 

what actions are chosen after time t. By 

convention, we'll suppose that in such terminal 

or absorbing situations, no reward is incurred. 

Episodic MDPs are those that have such states. 

The (usually random) time period from the 

beginning of time until a terminal condition is 

attained is referred to as an episode. We 

frequently consider undiscounted incentives in 

an episodic MDP, i.e. when. 
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Exercising 2 (Gambling): A gambler 

participates in a game in which she can bet any 

fraction of a dollar. Xt 0 at [0, 1] of her present 

fortune She reclaims her stake and doubles it. 

Xt+1= (1 + St+1At)Xt. 

Here (St; t ≥ 1) is a sequence of independent 

random variables taking values in {−1, +1} 

withP(St+1=1)=p.Thegoalofthegambleristomaxi

mizetheprobabilitythatherwealth 

reachesanapriorigivenvaluew∗>0.Itisassumedth

attheinitialwealthisin[0,w∗]. 

This problem can be represented as an 

episodic MDP, where the state space is X = [0, 

w∗] 

 

The reader inexperienced with MDPs could 

believe that all MDPs come with useful finite, 

one-dimensional state- and action-spaces 

based on two examples shown so far. If only it 

were so! In practise, state- and action-spaces 

are frequently vast, multidimensional spaces in 

practical applications. The dimensionality of 

the state space in a robot control application, 

for example, can be 3—6 times the number of 

joints the robot has. The state space of an 

industrial robot may easily be 12—20 

dimensions, whereas the state space of a 

humanoid robot could easily be 100 

dimensions. Items would have numerous types 

in a real-world inventory control application, 

and prices and costs would change based on 

the state of the "market," whose condition 

would therefore form part of the inventory 

control application. 

Value Functions 

The most obvious technique to determine an 

optimal behaviour in an MDP is to list all 

possible behaviours and then pick the ones that 

yield the best value for each beginning state. 

This approach isn't feasible because there are 

too many behaviours in general. Calculating 

value functions is a superior technique. In this 

method, one first computes the so-called 

optimal value function, which then allows for 

the very simple determination of an ideal 

behaviour. When the process is initiated from 

state x, the optimal value, V(x), of state x X 

delivers the highest feasible expected return. 

The optimal value function V: X R is named 

after it. 

 Function a behaviour is optimal if it reaches 

the ideal values in all states. Deterministic 

stationary policies are a unique type of 

behaviour that, as we'll see shortly, play a 

crucial part in MDP theory. They are defined 

by a mapping that connects states to actions 

(i.e., X A). The action At is selected using the 

following at any time t 0. 

At=(Xt).(6) 

More generally, a stochastic stationary policy 

(or just stationary policy) π maps states to 

distributions over the action space. When 

referring to such a policy π, we shall use π(a|x) 

to denote the probability of action a being 

selected by πinstatex. Note that if a stationary 

policy is followed in an MDP, i.e.,if 

At∼π(·|Xt), t ∈N, 

A (time-homogeneous) Markov chain will be 

used to represent the state process (Xt; t 0). 

The set of all stationary policies shall be 

referred to as stat. For the sake of brevity, we'll 

refer to "policy" rather than "stationary policy" 

throughout the following, in the hopes that this 

won't cause any confusion. 
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A Markov reward process (MRP) is induced 

by a stationary policy and an MDP: M = (X, 

P0), where P0 now assigns a probability 

measure across X R to each state, determines 

an MRP. The stochastic process ((Xt, Rt+1); t 

0) is generated by an MRP M, where (Xt+1, 

Rt+1) P0( | Xt). (Note that (Zt; t 0), Zt = (Xt, 

Rt) is a time-homogeneous Markov process, 

where R0 is an arbitrary random variable, and 

((Xt, Rt+1) is a time-homogeneous Markov 

process, where R0 is an arbitrary random 

variable.) 

 

with the understanding that I the process (Rt; t 

1) obtained while following policy is the 

"reward-part" of the process ((Xt, At, Rt+1); t 

0), and (ii) X0 is chosen at random such that P 

(X0 = x) > 0 holds for all states x. For each 

state, this second condition ensures that the 

conditional expectation in (7) is well-defined. 

If the initial state distribution meets this 

criterion, the definition of values is unaffected. 

 

In an MDP, it will also be useful to define the 

action-value function, Q: X A R, that 

underpins a policy stat: Assume that the first 

action A0 is chosen at random, with P (A0 = a) 

> 0 for all an A, and that the actions in later 

phases of the decision process are chosen 

according to policy. The resulting stochastic 

process is ((Xt, At, Rt+1); t 0), where X0 is the 

same as in the definition of V. Then X is 

optimal for all states at the same time. It's 

worth noting that in order for (8) to hold, (|x) 

must be focused on the set of actions that 

maximise Q(x,). In general, an action that 

maximises Q(x,) for some state x is called 

greedy with respect to Q in state x, given some 

action-value function, Q: X A R. Greedy w.r.t. 

Q is a policy that picks greedy actions only 

with respect to Q in all states. 

As a result, a greedy policy with respect to Q 

is optimal, i.e., knowing Q is enough to 

establish an optimal policy. Knowing V, r, and 

P is also sufficient to act. The next question is 

how to find V∗orQ∗. Let us start with the 

simple rquestion of how to find the value 

function of a policy: 
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Dynamic Programming Algorithms for 
Solving MDPs 

The above facts provide the basis for the 

value- and policy-iteration algorithms. Value 

iteration generates a sequence of value 

functions. 

Vk+1=T ∗Vk, k≥0, 

whereV0isarbitrary.ThankstoBanach’sfixed-

pointtheorem,(Vk;k≥0)convergestoV∗ at a 

geometricrate. 

Valueiterationcanalsobeusedinconjunctionwi

thaction-valuefunctions; inwhichcase, it 

takes the form 

Qk+1=T ∗Qk, k≥0, 

whichagainconvergestoQ∗atageometricrate.T

heideaisthatonceVk(orQk)iscloseto 

V∗(resp.,Q∗),apolicythatisgreedywithrespectt

oVk(resps.,Qk)willbeclose-to-optimal. 

Inparticular,thefollowingboundisknowntohol

d:Fixanaction-valuefunctionQandlet π be a 

greedy policy w.r.t. Q. Then the value of 

policy π can be lower bounded as follows 

(e.g., Singh and Yee, 1994, Corollary2): 

V π (x) ≥ V ∗ (x) − 2 1 − γ kQ − Q ∗ k∞, x ∈ 

X . (16) 

The process of policy iteration is as follows. 

Set a starting policy of 0 at random. At 

iteration k > 0, calculate the action-value 

function underlying k. (This is referred to as 

the policy evaluation stage.) Then define k+1 

as a greedy strategy with respect to Qk, given 

Qk (this is called the policy improvement 

step). In terms of the value function derived 

using k iterations of value iteration after k 

iterations, policy iteration delivers a policy 

that is not worse than the greedy policy if the 

two methods start with the same initial value 

function. A single step in policy iteration, on 

the other hand, has a significantly higher 

computational cost than a single update in 

value iteration (due to the policy review 

phase). 

VALUE PREDICTION PROBLEMS 

We look at the difficulty of estimating the 

value function V that underpins several 

Markov reward processes in this section 

(MRP). Value prediction issues can occur in a 

variety of ways: Value prediction problems 

include estimating the likelihood of a future 

occurrence, the estimated time before an event 

occurs, and the (action-)value function 

underpinning a policy in an MDP. Predicting 

the failure likelihood of a big power system 

(Frank et al., 2008) or estimating taxi-out 

times of flights at congested airports 

(Balakrishna et al., 2008) are only two of the 

many uses. Because the value of a state is 

defined as the expectation of the random 

return when the process is initiated from the 

given state, computing an average over 

numerous independent realisations starting 

from the given state is an apparent approach of 

estimating this value. This is an example of 

what is known as the Monte-Carlo approach. 

Unfortunately, the returns' variance can be 

significant, implying that the estimates' quality 

will be low. Also, when dealing with others, It 

may be impossible to reset the state of a 

system in a closed-loop form (that is, when 

estimation occurs while interacting with the 

system). The Monte-Carlo method cannot be 

used in this scenario without introducing 

additional bias. Temporal difference (TD) 

learning (Sutton, 1984, 1988), without a doubt 

one of the most important ideas in 

reinforcement learning, is a technique that can 

be used to overcome these problems. 

Temporal Difference Learning in Finite 
State Spaces: The usage of bootstrapping is a 

distinctive aspect of TD learning: predictions 

are employed as targets during the learning 

process. In this section, we'll go over the 

basics of the TD algorithm and how 

bootstrapping works. Then, we compare TD 

learning to (basic) Monte-Carlo approaches, 

arguing that each has its own strengths. 

Finally, the TD() technique is shown, which 

unites the two approaches. In this paper, we 

only consider the case of small, finite MRPs, 

in which the value-estimates of all states can 

be kept in an array or table in the main 

memory of a computer, a condition known as 

the tabular case in the reinforcement learning 

literature. When a tabular representation is 

used, extensions of the ideas provided here to 

huge state spaces are possible. 
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TABULAR TD(0):  

Differrence in state values corresponding to 

subsequent time steps A temporal difference 

error, in particular, is referred to as t+1.  

Tabular TD(0), like many other reinforcement 

learning methods, is a  

Tochastic approximation (SA) algorithm. It's 

obvious that if something onverges, it must 

converge to a function V such that, given V, 

the predicted temporal difference, 

 

is zero for all states x, at least for all states that 

are sampled infinitely often. A simple 

calculation shows that FV̂=TV̂−V̂, where T is 

the Bellman-operatorun derlying the 

MRPconsidered.ByFact1,FV̂ 

= 0 has a unique solution, the value function V 

. Thus, if 

TD(0) converges (and all states are sampled 

infinitely often) then it must converge to V . To 

study the algorithm’s convergence properties, 

for simplicity 

 



A Survey on Algorithms for Reinforcement Learning 

64    International Journal of Research Studies in Science, Engineering and Technology    V6 ● I11 ● 2019 

ON STEP-SIZES 

Because many of the algorithms we'll talk 

about involve step-sizes, it's worth spending 

some time talking about them. t = c/t, with c > 

0, is a simple step-size sequence that meets the 

aforementioned requirements. In general, any 

step-size sequence of the form t = ct will work 

for as long as 1/2 1. The smallest step-sizes are 

found in the = 1 series of these step-size 

sequences. This decision will be the best 

asymptotically, but in terms of the algorithm's 

transitory behaviour, choosing a value closer 

to 1/2 will be better (since with this choice the 

step-sizes are bigger and thus the algorithm 

will make larger moves). It is feasible to 

perform even better. In reality, Polyak 

developed a simple method called iterate-

averaging. In fact, people frequently utilise 

constant step sizes in practise, which 

obviously violates the RM requirements. This 

decision is supported by two factors: first, the 

algorithms are frequently utilised in non-

stationary environments (i.e., the policy to be 

evaluated might change). Second, the 

algorithms are frequently used only in the 

context of tiny samples. (When a constant 

step-size is used, the parameters converge in 

distribution, and the variance of the limiting 

distribution is proportional to the step-size 

chosen.) There is also a lot of work being done 

on developing methods for automatically 

tuning step-sizes, see (Sutton, 1992; 

Schraudolph, 1999; George and Powell, 2006) 

and the references therein. The jury is still out 

on which strategy is the most effective. The 

procedure can also be employed on an 

observation series of the type ((Xt, Rt+1, 

Yt+1); t 0), where (Xt; t 0) is an arbitrary 

ergodic Markov chain over X, (Yt+1, Rt+1) 

P0( | Xt), and (Yt+1, Rt+1) P0( | Xt). The shift 

is in the way temporal differences are defined: 

 

Then, without any additional circumstances, 

Vt still converges almost inexorably to the un 

converged value function. The MRP's 

underpinnings (X , P0). The distribution of 

states (Xt; t 0) in particular has no bearing on 

this is intriguing for a variety of reasons. We 

may be able to alter the distribution of the 

states (Xt; t 0) independently of the MRP if the 

samples are created using a simulator. This 

could be useful for balancing out any 

inequalities in the stationary distribution 

underlying the Markov kernel P. Another 

application is to learn about a specific policy 

goal. in an MDP while adhering to another 

policy, sometimes referred to as  created by 

employing the behaviour policy, where the 

action taken does not match the action that the 

target policy would have taken in the given 

state, while the remainder is kept. This method 

could allow you to learn about many policies 

at once (more generally, about multiple long-

term prediction problems). Off-policy learning 

is when you learn about one policy while 

following another. Because of this, we'll refer 

to learning based on triplets ((Xt, Rt+1, Yt+1); 

t 0) as off-policy learning when Yt+1 = Xt+1. 

When the intention is to apply the algorithm to 

an episodic problem, there is a third, technical 

purpose. The triplets (Xt, Rt+1, Yt+1) are 

chosen in this example as follows: First, the 

transition kernel P(X) is sampled for Yt+1. 

In other words, the process is resumed from 

the starting state distribution P0 when it 

reaches a terminal state. The time between a 

P0 restart and reaching a terminal state is 

referred to as an episode (hence the name of 

episodic problems). Continuous sampling with 

restarts from P0 is the name given to this 

method of creating a sample. 

Because tabular TD(0) is a standard linear SA 

method, its rate of convergence will be of the 

order O(1/t) (for further details, see Tadi'c 

(2004) and the references therein). The 

constant component in the rate, on the other 

hand, will be heavily influenced by the step-

size sequence chosen, the features of the 

kernel P0, and the value of. 

EVERY-VISIT MONTE-CARLO 

As previously indicated, computing sample 

means can also be used to estimate the value 

of a state, giving rise to the so-called every 

visit Monte-Carlo approach. Here, we clarify 

what we mean more specifically and compare 

the resulting method to TD (0). 

               Consider an episodic problem to solidify your 

views (otherwise, it is impossible to finitely 

compute the return of a given state since the 

trajectories are infinitely long). Let M = (X, 

P0) be the underlying MRP, and ((Xt, Rt+1, 

Yt+1); t 0) be the result of continuous 

sampling in M with restarts from some 

distribution P0 defined over X. Let (Tk; k 0) 

be a function. 

The sequence in which an episode begins (thus, for each k, XTk is sampled from P0). 
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Because multi-step forecasts of the value are 

used in Monte-Carlo methods like the one 

above (cf. Equation (19), they are referred to 

as multi-step methods. Algorithm 2 is the 

pseudo-code for this update-rule. 

This algorithm is an example of stochastic 

approximation once more. As a result, the 

ODE v(t) = V v determines its behaviour (t). 

Because of the one-of-a-kind globally 

asymptotically stable 

This ODE's equilibrium is V, and Vt usually 

always converges to V. Given that both 

algorithms achieve the same aim, one would 

wonder which is superior. 

TD (0) OR MONTE-CARLO?  

Figure 4 shows the undiscounted episodic 

MRP. Either 1 or 2 are the initial states. The 

process begins in state 1 with a high 

likelihood, while it begins in state 2 less 

frequently. Consider how TD(0) will act in the 

second state. State 3 has been visited 10 k 

times on average by the time state 2 is visited 

for the kth time. Assume that t = 1/(t + 1) is 

the case. The TD(0) update at state 3 is 

reduced to averaging the Bernoulli rewards 

incurred on leaving state 3. Var Vt(3) 1/(10 k) 

for the kth visit of state 2 (obviously, E Vt(3) 

= V (3) = 0.5). As a result, the goal of the state 

2 update will be an accurate estimate of the 

true value of state 2. Take a look at the Monte-

Carlo approach. The Monte-Carlo technique 

disregards the estimated value of state 3 and 

relies solely on the Bernoulli rewards. Var 

[Rt|Xt = 2] = 0.25, indicating that the target's 

variance does not change over time. This 

causes the Monte-Carlo approach take longer 

to converge in this case, demonstrating that 

bootstrapping can be beneficial in some cases. 

Imagine that the challenge is changed so that 

the reward connected with the transition from 

state 3 to state 4 is made deterministically.  

 

transitioning from condition 3 to state 4, when 

a Bernoulli random variable with parameter 

0.5 is used, the payoff is zero. The fourth state 

is the final one. The process is reset to state 1 

or 2 when it reaches the terminal state. Starting 

in state 1 has a probability of 0.9, while 

starting at state 2 has a probability of 0.1. the 

same as one Since Rt = 1 is the true target 

value, the Monte-Carlo method becomes faster 

in this situation, whereas for the value of state 

2 to approach its true value, TD(0) must wait 

until the estimate of the value at state 3 

approaches its true value. The convergence of 

TD is slowed as a result of this (0). In fact, for 
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I 1,..., N, one might envisage a longer chain of 

states, where state I + 1 follows state I and the 

only time a nonzero reward is incurred is when 

transitioning from state N 1 to state N. The 

pace of convergence of the Monte-Carlo 

approach is unaffected by the value of N in 

this example, whereas TD(0) would slow 

down as N increased. 

TD(Λ): UNIFYING MONTE-CARLO AND 
TD(0)  

Both Monte-Carlo and TD(0) have merits, as 

seen in the previous cases. Surprisingly, there 

is a method to bring these perspectives 

together. The so-called TD() family of 

techniques does this (Sutton, 1984, 1988). [0, 

1] is a parameter that enables for interpolation 

between Monte-Carlo and TD(0) updates in 

this case: TD(0) is obtained by setting = 0 

(thus the term TD(0)), but TD(1) is obtained 

by setting = 1, i.e., TD(1) is identical to a 

Monte-Carlo approach. In essence, given some 

> 0, the TD() update's targets are delivered as 

a blend of 

 

where the exponential weights (1 )k, k 0 are 

the mixing coefficients As a result, TD() will 

be a multi-step technique for > 0. The 

inclusion of so-called eligibility traces makes 

the algorithm incremental. 

In fact, the eligibility traces can be defined in a 

variety of ways, and as a result, TD() exists in 

a variety of different versions. The following 

is the TD() update rule for the so-called 

accumulating traces: 

 

The replacing traces update is what it's called. 

The trace-decay option regulates the amount of 

bootstrapping in these updates: When lim0+(1 

) k0 kRt:k = Rt:0 = Rt+1 + Vt(Xt+1), the 

above methods become equivalent to TD(0) 

(because lim0+(1 ) k0 kRt:k = Rt:0 = Rt+1 + 

Vt(Xt+1)). When = 1, we get the TD(1) 

algorithm, which simulates the previously 

reported every-visit Monte-Carlo technique in 

episodic problems using accumulating traces. 

(For an exact equivalent, assume that value 

updates occur only at the ends of trajectories, 

and that the updates are simply summed up to 

that point.) Because the discounted sum of 

temporal differences along a trajectory from a 

start to a terminal state telescopes and delivers 

the difference between the return along the 

trajectory and the value estimate at the start, 

the assertion follows. Replacing traces and = 1 

refer to a Monte-Carlo algorithm in which a 

state is only updated when it is encountered 

for the first time in a trajectory. The first-visit 

Monte-Carlo method is the related algorithm. 

The formal relationship between the first-visit 

Monte-Carlo approach and TD(1) with 

replacing traces is known to be valid only for 

the undiscounted situation (Singh and Sutton, 

2003). 



A Survey on Algorithms for Reinforcement Learning 

International Journal of Research Studies in Science, Engineering and Technology V6 ● I11 ● 2019       67 

1 k i1 i2 ik 

i i i 

 

1996). The pseudocode for the variation with 

replacement traces is given by Algorithm 3. 

The best value of is discovered by trial and 

error in practise. In fact, even during the 

algorithm, the value of can be altered without 

affecting convergence. This is true for a 

variety of additional potential eligibility trace 

modifications (for precise conditions, see 

Bertsekas and Tsitsiklis, 1996, Section 5.3.3 

and 5.3.6). In reality, the replacement traces 

variant of the method is thought to perform 

better (for some examples when this happens, 

consult Sutton and Barto, 1998, Section 7.8). It 

has been noticed that > 0 is useful when the 

learner only has a partial understanding of the 

state, or (in a related case) when function 

approximation is used to approximate the 

value functions in a mathematical model. 

ALGORITHMS FOR LARGE STATE SPACES 

When the state space is large (orinfinite), it 

is not feasible to keep a separate value for 

each state in the memory. In such cases, we 

often seek an estimate of the values in the 

form 

Vθ(x) =θTϕ(x), x ∈X, 

where θ ∈Rd is a vector of parameters and ϕ : 

X → Rd is a mapping of states to d- 

dimensional vectors. For state x, the 

components ϕi(x) of the vector ϕ(x) are called 

the features of state x and ϕ is called a 

feature extraction method. The individual 

functions 

ϕi: X → R defining the components of ϕ are 

called basis functions. 

The features (or basic functions) can be 

created in a variety of ways once you have 

access to the state. If x R (i.e., X R), a 

polynomial, Fourier, or wavelet basis can be 

used up to a certain order. For example,  

provided a suitable measure (such as the 

stationary distribution) over the states is 

available, (x) = (1, x, x2,..., xd1)T can be used 

in the case of a polynomial basis or an 

orthogonal system of polynomials. This 

second option may aid in the faster 

convergence of the incremental algorithms we 

will explore shortly. In the case of 

multidimensional statespaces, the tensor 

productcon struction is a commonly used way 

to construct features given features of the 

states’ 

individual components. The tenso 

rproductcon struction works as follows: 

Imagine thatX⊂X1×X2×...×Xk.Let 

ϕ(i):Xi→Rdibea feature extractor defined for 

theith state component. Thetensor product 

ϕ=ϕ(1)⊗...⊗ϕ(k)feature extractor will have 

d=d1d2...dk components, which can be 

conveniently indexed using multi-indices of 

the form (i1,...,ik),1≤ij≤dj,j= 1, . . . , k. Then 

ϕ(i,...,i)(x) = ϕ(1)(x1)ϕ(2)(x2) . . . ϕ(k)(xk). When 

X ⊂Rk, one particularly 

popular choice is to use radial basis function 

(RBF) networks, when ϕ(i)(xi) = (G(|xi− 

x(1)|),...,G(|xi−x(di)
|))T.  

Herex(j)∈R(j=1,...,di) is fixed by the user 

andG is a suitable function. A typical choice 
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for G is G(z) = exp(−η z2 ) where η >0 is a 

scale 

parameter. The tensor product construct in this 

cases places Gaussians at points of a regular 

grid and the ithbasis function becomes 

 

Then V(x) = i:i(x)=1 I I I I I I I I I I I I I I I I If 

(x) is s-sparse (i.e., only s elements of (x) are 

non-zero), the value of state x can be 

determined at the cost of s additions, given 

that the index of the non-zero components of 

the feature vector can be obtained directly. 

This is the situation when the features are 

defined using state aggregation. In this 

instance, 

(The individual features') coordinate functions 

correspond to markers of non-overlapping 

sections of the state space X whose union 

encompasses X. (i.e., the regions form a 

partition of the state space). T(x) will 

obviously be constant over the individual areas 

in this situation, therefore state aggregation 

effectively "discretizes" the state space. A 

function that aggregates states. 

Tile coding (formerly known as CMAC, 

Albus, and others) is another option that leads 

to binary features. 

1971 and 1981. The basis functions of 

correspond to indicator functions of numerous 

shifting partitions (tilings) of the state space in 

the simplest version of tile coding: if s tilings 

are utilised, will be s-sparse. The offsets of the 

tilings corresponding to different dimensions 

should be different to make tile coding an 

efficient function approximation approach. 

THE CURSE OF DIMENSIONALITY   

The issue with tensor product constructions, 

stateaggre- gation and straight forward tile 

coding is that when the state space is high 

dimensional they quickly become intractable: 

For example, a tiling of [0, 1]D with cubical 

regions with side- lengths of ε gives rise to d = 

ε−D-dimensional feature- and parameter-

vectors. If ε = 1/2 and D = 100, we get the 

enormous number d ≈ 1030. This is 

problematic since state- representations with 

hundreds of dimensions are common in 

applications. At this stage, 

onemaywonderifitispossibleatalltosuccessfully

dealwithapplicationswhenthestate lives in a 

high dimensional space. What often comes at 

rescue is that the actual problem. The 

complexity of the state variable could be 

substantially lower than what is predicted by 

counting the number of dimensions (although, 

there is no guarantee that this happens). To see 

why this is occasionally true, consider that the 

same problem can have numerous 

representations, some of which have low-

dimensional state variables and others with 

high-dimensional state variables. Because the 

user often chooses the state-representation in a 

conservative manner, it's possible that many of 

the state variables are useless in the chosen 

representation. It's also possible that the actual 

states encountered are on (or near) a low-

dimensional submanifold of the specified 

high-dimensional "state-space." 

Consider an industrial robot arm with three 

joints and six joints. The number of states 

represented will easily be in the millions, yet 

the inherent dimensionality will remain at 12. 

In fact, the higher the dimensionality, the more 

cameras we have. A straightforward strategy 
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n 

j=1 

KD(x,xj) 

aimed at reducing dimensionality would 

recommend using as few cameras as possible. 

More information, on the other hand, isn't 

going to hurt! As a result, smart algorithms 

and function approximation methods that can 

deal with high-dimensional but low-

complexity situations should be sought. 

Strip-like tilings combined with hash 

functions, interpolators employing low-

discrepancy grids (Lemieux, 2009, Chapters 5 

and 6), and random projections are all 

possibilities (Das- gupta and Freund, 2008). 

Methods for approximating nonlinear 

functions (for example, neural networks with 

sigmoidal transfer functions in the hidden 

layers or RBF nets).   

which should be compared to its parametric 

counterpart (20). Other examples include 

methods that work by finding an appropriate 

function in some large (infinite dimensional) 

function space that fits an empirical error. The 

function space is usually a Reproducing 

Kernel Hilbert space which is a convenient 

choice from the point of view of optimization 

 

It needs to be contrasted with its parametric 

counterpart (20). Methods that work by 

finding a suitable function in a huge (infinite 

dimensional) function space that fits an 

empirical inaccuracy are another example. The 

function space is typically a Reproducing 

Kernel Hilbert space, which is a good choice 

from an optimization standpoint. Spline 

smoothers (Wahba, 2003) and Gaussian 

process regression are examples of special 

situations (Rasmussen and Williams, 2005). 

Another option is to divide the input space 

recursively into finer sections using a heuristic 

criterion and then forecast the values in the 

leafs using a simple approach.  

Eventually, tree-based approaches emerge. 

The line separating parametric and 

nonparametric approaches is a hazy one. When 

the number of basis functions is permitted to 

change (i.e., new basis functions are 

introduced as needed), a linear predictor 

becomes a nonparametric technique. Thus, 

when experimenting with alternative feature 

extraction approaches, we may argue that we 

are using a nonparametric strategy from the 

perspective of the total tuning process. In fact, 

if we take this perspective, it follows that 

"real" parametric approaches are rarely, if 

ever, utilised in practise. 

The inherent flexibility of nonparametric 

approaches is a benefit. This, however, usually 

comes at the cost of greater computing 

complexity. As a result, efficient 

implementations are critical when employing 

non-parametric approaches (e.g., one should 

use k-D trees when implementing nearest 

neighbour methods, or the Fast Gaussian 

Transform when imple- menting a Gaussian 

smoother). Nonparametric approaches must 

also be fine-tuned. 

They have the potential to overfit or underfit. 

If k is too large in a k-nearest neighbour 

approach, for example, 

If k is too large, the approach will smooth out 

too much (i.e., it will underfit), whereas if k is 

too little, it will fit to the noise (i.e., overfit). 

Section 3.2.4 will go over overfitting in more 

detail. The reader is urged to consult for more 

information on nonparametric regression. 

Although we will explore parametric function 

approximation (and in many cases linear 

function approximation) in the next sections, 

many of the strategies can be extended to 

nonparametric methods. When such extensions 

are available, we will make a note of it. Until 

now, the debate has implicitly assumed that 

the state is measurable. In real-world 

applications, however, this is rarely the case. 

Fortunately, the methods we'll explore below 

don't require direct access to the states; they'll 

work just as well if any "sufficiently 

descriptive feature-based representation" of 

the states is provided (such as the camera 

images in the robot-arm example). 

Constructing state estimators (or observers, in 

control language) based on the data is a 

popular technique to arrive at such a 

representation. 

TD(Λ) WITH FUNCTION APPROXIMATION 

Letusreturntotheproblemofestimatingavaluef

unctionVofaMarkovrewardprocess M = (X , 

P0), but now assume that the state space is 

large (or even infinite). Let D = ((Xt, Rt+1); t 

≥ 0) be a realization of M. The goal, as 

before, is to estimate the value function of M 

given D in an incremental manner. 

Choose a smooth parametric function-

approximation method (Vθ; θ  ∈Rd) (i.e.,  for 
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any 

θ∈Rd,Vθ:X→Ris such that∇θVθ(x) exists for 

anyx∈X). The generalization of 

Herezt 

∈Rd.Algorithm4showsthepseudocodeofthisalg

orithm. 

To see that this algorithm is indeed a 

generalization of tabular TD(λ) assume that X 

= 

{x1,...,xD}andletVθ(x)=θTϕ(x)withϕi(x)=I{x=x

i}. Note that since Vθ is linear in the 

parameters (i.e.,Vθ=θTϕ), it holds that 

∇θVθ=ϕ. Hence, identifying zt,i(θt,i)withzt(xi) 

(resp.,Vˆt(xi)) we see that the update(21), 

indeed, reduces to the previous one. 

In the off-policy version of TD(λ), the 

definition of δt+1 becomes 

δt+1 = Rt+1 + γVθt (Yt+1) − 

Vθt (Xt) 

Off-policy sampling, unlike tabular 

sampling, does not guarantee 

convergence; in fact, the parameters may 

diverge (see, for example, Bertsekas and 

Tsitsiklis, 1996, Example 6.7, p. 307). 

When the distributions of (Xt; t 0) do not 

match the stationary distribution of the 

MRP M, this is true for linear function 

approximation. When the approach is 

combined with a nonlinear function-

approximation method, the algorithm may 

diverge (see, e.g., Bertsekas and Tsitsiklis, 

1996, Example 6.6, p. 292). See Baird 

(1995); Boyan and Moore for more 

examples of instability (1995). 

On the plus side, when I a linear function-

based algorithm is used, practically certain 

convergence can be guaranteed. 

The approximation method is used to the 

following: X Rd; (ii) the stochastic 

process (Xt; t 0) is utilised. 

ACTIVE LEARNING INBANDITS   

Consider active learning, which is still 

possible if the MDP is in a single state. Given 

(say) T interactions, the goal should be to 

select an action with the biggest immediate 

payoff. Because the benefits obtained during 

interaction are irrelevant, the only reason not 

to try an action is if it can be proven to be 

worse than another action with enough 

certainty. The remaining measures should be 

attempted in the hopes of demonstrating that 

some are ineffective. Calculating upper and 

lower confidence boundaries for each action is 

a straightforward approach to accomplish this: 

 

If Ut(a) maxaJA Lt, then an action is 

eliminated (aJ). Here, 0 1 is a user-defined 

parameter that determines the goal 

confidence level at which the algorithm is 

allowed to fail to produce the greatest 

predicted reward action. This algorithm is 

unimprovable except for constant factors 

and using estimated variances in the 

confidence bounds (Even- Dar et al., 

2002; Tsitsiklis and Mannor, 2004; Mnih 

et al., 2008). 

Online learning in Markov Decision 
Processes 

Let us now return to MDPs' online learning. 

One such goal is to reduce regret, which is 

defined as the difference between the total 

reward achieved by the best policy and the 

total reward received by the learner. This issue 

is discussed in the first portion of this section. 

Another goal could be to reduce the number of 

time steps when the algorithm's future 

projected return is less than the ideal expected 

return by a certain amount. In the second part 

of this section, we'll look at this issue. 

DIRECT METHODS 

In this part, we look at techniques that attempt 

to directly approximate the optimal action-

value function Q. The algorithms under 

consideration are sample-based, approximate 

variants of value iteration that produce a 

succession of action-value functions (Qk; k 0). 

The assumption is that if Qk is close to Q, a 

greedy policy with respect to Qk will be close 

to optimal, as demonstrated by the bound (16). 

The first algorithm we'll look at is Watkins' Q-

learning (1989). We begin by discussing this 

approach for (small) finite MDPs, then move 

on to its numerous extensions, which work 

even in enormous MDPs. 
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Q-learning in Finite MDPs 

 

 
where T∗is the Bellman optimality operator 

defined by (15). Hence, under the minimal 

assumptionthateverystate-

actionpairisvisitedinfinitelyoften,instochastice

quilibrium, one must have T∗Q = Q. Using 

Fact 3,we see that if the algorithm converges, it 

must converge to Q∗under the stated condition. 

The sequence (Qt; t ≥ 0) is indeed known to 

converge to Q∗when appropriate local learning 

rates are used (Tsitsiklis,1994;Jaakkola 

etal.,1994).15TherateofconvergenceofQ-

learningwasstudiedbySzepesv´ari(1997)in 

an a symptotics ettingandlater by Even-Darand 

Mansour(2003) in a finite-sample setting. 

WHAT POLICY TO FOLLOW DURING 
LEARNING?  

One of the most appealing features of Q-

learning is its simplicity, which allows for the 

use of any sampling technique to create 

training data as long as all state-action pairs 

are updated infinitely often in the limit. In a 

closed-loop situation, the Boltzmann scheme 

(in which the probability of selecting action an 

at time t is chosen to be proportional to 

eQt(Xt,a)) or the -greedy action selection 

scheme (in which the probability of selecting 

action an at time t is chosen to be proportional 

to eQt(Xt,a)) are the most commonly used 

strategies. With the right adjustment, the 

behaviour policy can reach asymptotic 

consistency (see Szepesv'ari, 1998, Section 

5.2, and Singh et al., 2000). However, as 

described in Section 4.2, more systematic 

exploration may be required in closed-loop 

learning to obtain acceptable online 

performance. 

Actor-critic methods:  Actor-critic 

approaches are used to iterate policies in a 

broad way. It's important to remember that 

policy iteration works by alternating between a 

full policy evaluation and a full policy 

improvement step. Exact evaluation of policies 

using sample-based approaches or function 

approximation may necessitate an endless 

number of samples or be impossible due to the 

limitations of the function-approximation 

technique. As a result, policy iteration 

reinforcement learning algorithms must update 

the policy based on partial information of the 

value function. 

Generalized policy iteration refers to 

algorithms that update the policy before it is 

fully evaluated (GPI). An actor and a critic are 

two closely interacting processes in GPI: the 

actor strives to improve current policy, while 

the critic reviews current policy, thereby 

assisting the actor. 
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IMPLEMENTING ACRITIC 

The critic's task is to assess the value of the 

actor's current target policy. This is a problem 

in which you must anticipate the value of 

something. As a result, the critic can employ 

the techniques indicated in Section 3. Because 

the actor requires action values, the methods 

are usually changed to directly estimate action 

values. The algorithm known as SARSA() is 

obtained by correctly extending TD(). This is 

the first algorithm we'll talk about. When 

LSTD() is extended, we get LSTD-Q(), which 

is the subject of the next section. -LSPE could 

be extended as well, but for the purpose of 

brevity, we won't go over that here. 

SARSA Similarly to Q-learning, SARSA 

keeps track of the action-value underlying 

finite (and small) state and action spaces. 

 

For further exploration:  

Inevitably, due to space constraints, this 

review must missalargeportion of the 

reinforcement Learning literature. 

Further reading: Effective sampling-based 

planning (Kearns et al., 1999; Szepesv'ari, 

2001; Kocsis and Szepesv'ari, 2006; Chang et 

al., 2008) is one issue that has received little 

attention. The main takeaway is that, in the 

worst-case scenario, off-line planning can 

scale exponentially with the dimensionality of 

the state space (Chow and Tsitsiklis, 1989), 

whereas online planning (i.e., planning for the 

"current state") can avoid the dimensionality 

curse by spreading the planning effort over 

multiple time steps (Rust, 1996; Szepesv'ari, 

2001). 

Other topics of interest include linear 

programming-based approaches (de Farias and 

Van Roy, 2003, 2004, 2006), dual dynamic 

programming (Wang et al., 2008), sample 

average approximation techniques (Shapiro, 

2003), such as PEGASUS (Ng and Jordan, 

2000), and online learning in MDPs with 

arbitrary reward (de Farias and Van Roy, 

2003, 2004, 2006). Effective sampling-based 

planning (Kearns et al., 1999; Szepesv'ari, 

2001; Kocsis and Szepesv'ari, 2006; Chang et 

al., 2008) is one issue that has received little 

attention. The main takeaway is that, in the 

worst-case scenario, off-line planning can 

scale exponentially with the dimensionality of 

the state space (Chow and Tsitsiklis, 1989), 

whereas online planning (i.e., planning for the 

"current state") can avoid the dimensionality 

curse by spreading the planning effort over 

multiple time steps (Rust, 1996; Szepesv'ari, 

2001). 

Other topics of interest include linear 

programming-based approaches (de Farias and 

Van Roy, 2003, 2004, 2006), dual dynamic 

programming (Wang et al., 2008), sample 

average approximation techniques (Shapiro, 

2003), such as PEGASUS (Ng and Jordan, 

2000), and online learning in MDPs with 

arbitrary reward (de Farias and Van Roy, 

2003, 2004, 2006). 

Applications Learning in games (e.g., 

Backgammon (Tesauro, 1994) and Go (Silver 

et al., 2007), applications in networking (e.g., 

packet routing (Boyan and Littman, 1994), 

channel allocation (Singh and Bertsekas, 

1997)), applications to operations research 

problems (e.g., targeted marketing (Abe et al., 

2004), job-shop scheduling (Zhang and Dietz, 

2004), 
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