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INTRODUCTION 

Automation forms an important foundation to 
make progress in the evolution of human beings. 

It saves on human resource as it reduces labor 

requirements per unit of output produced. This 
saved human resource can then be applied in 

other fields towards further advancement. With 

this in mind, there has been a continuous 

demand for systems that can automatically 
manage themselves given high-level objectives 

from system administrators. This has led to the 

advent of autonomic computing (Kephart & 
Chess, 2003).Autonomic computing systems in 

this case are systems that are expected to 

automatically adapt by reacting to variable 

environmental conditions and runtime 
phenomena. This can be achieved through 

adjusting their configuration parameters as an 

adaptive response in order to discover the most 
optimum configuration given the characteristics 

of the current workload. This study therefore 

seeks to answer the following two research 
questions: 

 What are the merits and demerits of 

optimization techniques that can be used to 

achieve load scalability in servers? 

 What are the parameters that need to be 

considered when performing configuration 

optimization in storage servers? 

Section 1 of this article provides a Literature 
Review that focuses on the theoretical concepts 

of scalability and performance tuning. Section 2 

then provides a description of the methodology 
that was applied to obtain the results. It does this 

by providing a description of the high-level 

architecture of the Maria DB Galera 
synchronous, multi-master distributed database 

that was used.  

The methodology Section concludes with a 

description of how a workload generator was 
used to create training and test data. Section 3 

provides the results as well as a discussion of 

what the results mean.  

The study submits a probabilistic reasoning 

approach as opposed to the existing linear 

optimization techniques. An influence diagram 

is then used to model a stochastic, nonlinear 
environment of the key configurations that 

should be considered when conducting 

performance tuning of storage servers. Section 4 
concludes the article with a discussion of the 

merits and demerits of automation. 

ABSTRACT 

The ability to scale in order to handle an increased amount of work is critical to both a business and its 

Information Technology. However, there are diminishing returns as the number of scalability enhancements 

are increased. This article submits the fact that there is a need to consider performance tuning as opposed 

to only horizontal or vertical scalability. Optimization techniques based on a greedy algorithm are 

reviewed. For example, Constraint Programming, Mixed Integer Programming, and Local Search. The 

article further indicates that the complexities of performance tuning do not favor modeling it as a linear 

process. It proposes the use of evidence-based, probabilistic reasoning for system administrators to identify 

which parameters need to be tuned and how to tune them. An influence diagram is used as an example to 

show the complexities involved when tuning one parameter has a high probability of affecting many other 

parameters in the system. 
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LITERATURE REVIEW 

Scalability 

Scalability can be defined as the capability of a 

system to be enhanced to handle an increased 

amount of work (Shahapure & Jayarekha, 
2014). Author (2015) adds on to say that this is 

done without impacting on its responsiveness to 

execute any action within a given time interval. 

The increased amount of work in the context of 

a business can in turn be caused by many factors 

including a peak season of sales or venturing 
into a new market that increases the number of 

clients to serve. It can also be based on an 

expansion of the business by adding an 

administrative unit that is either in the same 
premise or in a geographically separate premise. 

Enhancements of the system are usually made 

by the system administrators and depend on the 
system. For example, how a database server is 

enhanced is different from how an application 

server or a web server is enhanced. These 
enhancements are geared towards increasing the 

performance of a system which in turn enables it 

to handle an increased amount of work. The 

performance is in turn based on maximizing the 
throughput and minimizing the response time. It 

is also based on maximizing the resilience to 

faults which can be achieved by not overloading 

the system. Load balancing, especially in the 
context of a distributed system, plays a critical 

role in this case (Anjum & Patil, 2017).  

There are two common techniques of enhancing 
a system to accommodate a growing amount of 

work: horizontal scaling and vertical scaling. 

Horizontal scaling is the most common scaling 

technique and is based on adding or removing 
nodes from a system. As noted in a study on 

cloud ecosystems by Anjum and Patil (2017), 

the nodes can be in the form of Virtual 
Machines (VMs) as opposed to physical 

machines. In the case of physical machines, 

system administrators can configure hundreds of 
physical machines into a cluster to obtain an 

aggregate computing power. This aggregate 

computing power often exceeds that of 

computers based on a single, traditional 
processor. Horizontal scaling is however reliant 

on a high-performance network such as Gigabit 

Ethernet, Infinity Band, and Myrinet, amongst 
others. Vertical scaling on the other hand, 

maintains the number of nodes at a constant 

level and instead adds or removes the amount of 

resources that are allocated to each node. Fig 

shows the difference between the two types of 

scaling. 

 

Figure1. Horizontal scaling versus vertical scaling 

Vertical and horizontal scalability can in turn be 

grouped into different perspectives depending 

on what is being addressed. The first 
perspective, administrative scalability, addresses 

the capability of a system to maintain an 

acceptable level of throughput, response time, 
and resilience as the business expands across 

numerous departments. If the expansion is 

across multiple geographical regions, for 
example in the case of new market entry, then it 

is addressed by the perspective of geographic 

scalability. The third perspective, functional 

scalability, addresses the ability to enhance a 

system by adding new functional requirements 

at minimal effort. This article focuses on the 

fourth perspective, which is load scalability. 
Load scalability addresses the ability of a 

system to expand or contract its resource pool to 

accommodate a changing load. The resource 
pool can be in the form of memory in a shared 

memory architecture, or in the form of storage 

in a shared storage architecture. Scalability is a 
significant issue not only in technology, but also 

in business.  The number of clients demanding 

for services has the potential of increasing in 

cases where clients consider the services offered 
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by a business as valuable. Information 

Technology applied in Computer-Based 
Information Systems acts as a critical enabler to 

assist a business to cope with the growing 

demand for services. An increase in the number 
of clients is good for business growth and 

stability. Therefore, businesses in various 

sectors of an economy desire the ability to 

handle a growing number of clients; that is, the 
ability to scale. Inability to cope with growth 

can lead to loss of business (Rao, Murthy, & 

Devi, 2018). The enabling infrastructure of a 
business, usually in the form of cloud 

computing, is expected to also scale to support 

the business. It is therefore important for both 
technology and businesses to be scalable. 

Scalability is directly proportional to the amount 

of energy consumed. This is especially true for 

vertical scaling which results in high server 
density in data centers. The increase in server 

density has also been championed by 

manufacturers who convince their clients to 

utilize every available space in their data centers 

given the Total Cost of Ownership (TCO) 
required to maintain a data center. The TCO in 

this case is distributed across three subsystems: 

Information Technology (IT), power, and 
cooling (Gomes, et al., 2017). The increase in 

server density with the aim of scalability has led 

to the energy consumption in data centers to be 

quadrupled over the last decade. In fact, a study 
by Afonso and Moreira (2017) showed that a 

data center with 2,000 m
2
 and an energy 

consumption density of 1,000 Wm
-2

 has a peak 
cooling subsystem consumption that is 

equivalent to a 20,000 m
2
 office building. And 

this was the case without considering the IT and 
power subsystems. Data centers consume 3% of 

global electricity production and account for 

200 million metric tons of CO2 (Rallo, 2014). 

Given that energy efficiency is a priority for 
competitiveness, there is a need for businesses 

to achieve scalability in an energy efficient 

manner. 

 

Figure 2. Diminishing returns based on Amdahl’s Law 

The marginal productivity or benefits of a 

system gradually diminishes as the amount of 
investment or enhancements are increased. This 

is referred to as the law of diminishing returns 

and is well-defined by Amdahl’s Law. The 
addition of VMs in a cluster or the addition of 

resources assigned to each VM in a cluster tends 

towards either horizontal scalability or vertical 
scalability respectively. A system can handle an 

increase in the amount of work by distributing 

portions of the work amongst either VMs in the 
cluster or amongst the added resources in each 
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VM in the cluster. Suppose that a system can 

handle an increase in workload by distributing 
7

10
 of a program amongst VMs for parallel 

processing instead of sequential processing in 

one VM. If α is the fraction of the program that 

is sequential and 1 − 𝛼 is the fraction of the 

program that can be parallelized, then the 

maximum throughput that can be achieved by 𝑥 

units of VMs can be defined by Amdahl’s Law 
as shown in (1). 

1

𝛼+
1−𝛼

𝑥

                                               (1) 

A graphical representation of this while holding 
all other factors constant shows a clear 

diminishing return as the number of scalability 

enhancements increases exponentially, in a 

cubic manner, or in a linear manner as shown in 

Figure . 

Performance Tuning 

Performance tuning involves the 
implementation of activities geared towards 

improving a system’s capability of meeting its 

non-functional requirements. The non-
functional requirements in this case include 

performance that can be quantitatively measured 

in form of response time latency and in the form 
of transaction throughput. Developers of 

complex systems intentionally expose a set of 

configuration parameters to system 

administrators. As explained by Sullivan (2003), 
this is done because of the realization that a 

system experiences numerous changes in 

environmental variables as well as changes in 
runtime phenomena which includes unexpected 

input in form of a workload. The study further 

implied that leaving a system to run without 
continuously changing its default configurations 

either reactively or proactively is not good 

because it prevents it from handling unexpected 

work loads (Sullivan, 2003). In other words, no 
single configuration of a system caters for every 

possible workload. Systems need to be 

reconfigured or tuned from time to time to 
enable them to adapt to constantly changing 

environmental variables and runtime 

phenomena. 

Performance tuning is motivated by a 
performance problem which is in turn based on 

identifying a slow or unresponsive system. It is 

this performance problem that acts as a starting 
point for the measure-evaluate-improve-learn 

cycle of quality assurance. It is important to 

clearly identify the root cause of a problem 

before attempting to address it (Dostál, 2014). It 

is this early identification that provides the 
solver with the required focus and saves on time 

by ensuring the right thing is done 

(effectiveness). The root cause of slow or 
unresponsive systems is overloading which 

causes some components of the system to reach 

a limit in their ability to respond to subsequent 

loads. Other components of the system may 
remain idle as they wait for the overloaded 

component to perform its task. This overloaded 

component, the root cause of a performance 
problem, is referred to as a bottleneck. 

It is important to objectively identify the part of 

a system that is critical for improving 
performance. The most critical sections of the 

system in this case are the bottlenecks, which 

can be determined by using a profiler. A profiler 

supports dynamic program analysis which is 
conducted by instrumenting either the program 

source code or its binary executable and 

measuring Key Performance Indicators (KPIs) 
at runtime.  

This is as opposed to qualitatively and 

subjectively guessing the bottlenecks of a 

system. This study applied a periodic (non-
intrusive) sampling to measure KPIs. Common 

measurable KPIs include space and time 

complexity, and frequency and duration of 
function calls. Zhang, Abbasi, Huck, and 

Malony (2016), Rodrigues, dos Santos, 

Guimaraes, Granville, and Tarouco (2014), and 
Nataraj, Malony, Morris, Arnold, and Miller 

(2010) showed that statistical profilers are less 

intrusive to the target program because they rely 

on periodic sampling.  

This allows the target program to run at near 

full-speed thus supporting the acquisition of a 

more accurate picture of the target program’s 
execution as well as its bottlenecks. 

A performance problem motivates the need to 

decide which parameters should be reconfigured 
and how they should be reconfigured. Any 

problem regarding decision-making involves the 

task of choosing “the best” amongst alternatives. 

The measure of goodness can be based on a pre-
defined objective such that the decision made is 

the one that maximizes or minimizes this 

objective.  

For example, if the objective is to enable a 

server to handle 200,000 queries per second, 

then the best decision will be the one that 

maximizes the number of queries per second. 
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This objective can be generalized to maximizing 

efficiency and minimizing the error-rate.  

According to Van Aken, Pavlo, Gordon, and 

Zhang (2017) the efficiency can be 

quantitatively measured based on response-time 
latency and transaction throughput in the case of 

storage servers. Response-time latency was 

defined as the speed at which a storage server 

can respond to a read request (commonly 
associated with On-Line Analytical Processing  

[OLAP] workloads). Transaction throughput on 

the other hand was defined as the speed at which 
a storage server can collect new data through 

write requests (commonly associated with On-

Line Transaction Processing [OLTP] 
workloads). Using a performance problem as the 

foundation, it is possible to model the objective 

as an optimization problem as shown in (2). The 

following steps were applied to ensure 
agreeability of the defined optimization 

problem: 

Table1. Modelling steps. 

Step Description 

I 
Find out what are the decision variables (something that captures the real decisions you are interested 

in, i.e. what to decide (what you will decide upon)) 

II 
Model the problem constraints (tells you what you can do and what you cannot do – essentially 

defines what can be accepted as a feasible solution, i.e. defines what is a solution) 

III 
Define the objective function (defines what you are trying to maximize or minimize, i.e. defines the 

quality of your solution 

Maximize:   
(𝑡𝑝)𝑦𝑤 +  𝑟𝑝 𝑧𝑤

𝑒𝑝 + 𝑎𝑝
 

𝑝∈𝑇

𝑥𝑝  

(2) 
Subject to:  𝑉𝑝𝑖𝑥𝑝

𝑝∈𝑇

≤ Ki 

Such that: xp ,  𝑦𝑤 ,  𝑧𝑤 ∈  0,1 ,   𝑝 ∈ 𝑇  

   
This implies that the performance is maximized 

subject to pre-defined constraints. The pre-

defined constraint specifies that if a parameter, 

p, causes the value,𝑉 of a specific hardware 𝑖 
(𝑉𝑝𝑖 ),to change, then the change should be less 

than or equal to what the server hardware is 

capable of handling for the hardware under 

consideration, 𝐾𝑖 .This is on condition that the 

decision to reconfigure parameter, 𝑝, that affects 

hardware 𝑖 has been made, that is, on condition 

that𝑥𝑝 =  1. If it has not been chosen, then 

𝑥𝑝 =  0. Performance in such a system can be 

measured by transaction throughput (𝑡𝑝 ) and 

response time latency (𝑟𝑝). If the optimization is 

meant for OLTP workloads, then the value of 

𝑦𝑤  will be 1 and 𝑧𝑤  will be 0. On the other 

hand, if the optimization is meant for OLAP 

workloads, then the value of 𝑧𝑤  will be 1 and 

𝑦𝑤  will be 0. 

The optimization problem goes a step further to 

define the negative effect that changing 

parameter 𝑝 has on other parameters, that is, 𝑒𝑝 . 

Lastly, 𝑎𝑝  represents the adaptation latency of 

parameter 𝑝. The equation implies that to 

maximize the performance, both 𝑒𝑝  and 𝑎𝑝  

should be kept at minimum levels. 

METHODOLOGY 

Experiment Test Bed 

The test-bed was made up of a cluster of nodes 

that formed a synchronous, multi-master 

distributed database with high-persistence 

features based on a shared-nothing architecture. 
The shared-nothing architecture enabled the 

system to work with inexpensive hardware that 

met at least the minimum requirements for a 
Maria DB Galera Cluster. The shared-nothing 

architecture also contributed towards the 

elimination of a single-point-of-failure because 
each node in the cluster had its own inexpensive 

combination of CPU, storage, and memory. Fig 

below depicts the architecture of the test bed.  

Training and Testing Data 

Spawner workload generator was used to create 

the dataset. 75% of the dataset was used as 

training data. The training data was fed into the 
test bed in order to simulate a real-world 

scenario. Periodic performance measurements 

were then conducted in favor of continuous 

performance measurements which can 
negatively impact the performance of a system 

in production. The results of the periodic 
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performance measurements were then used to 

identify the vital parameters that should be 
involved in the influence diagram. 

The remaining 25% of the dataset was used as 

test data. The test data was required to confirm 
intuitive and learned notions of causality. This 

was accomplished through maximum likelihood 

estimation by first discretizing continuous 

variables, and then recording the frequency of 

occurrence between the values of a node and the 
combination of the values of its parent(s). The 

75:25 training:test data ratio has been used 

successfully in previous research such as by 
Feng, et al. (2016) and Shinde and Channe 

(2018). 

 

Figure 3. Architecture of the experiment’s test bed 

RESULTS AND DISCUSSION 

Part of the following Sections provide a review 

of literature on the most common optimization 

techniques. These are based on greedy 

algorithms and the branch & bound and 
relaxation concepts. Constraint Programming as 

well as Mixed Integer Programming are 

reviewed as techniques that guarantee high 
quality. Local Search on the other hand is 

reviewed as a technique that guarantees 

scalability. The last Section then submits an 
approach that is based on probabilistic 

reasoning. The key advantage of its ability to 

model a stochastic, non-linear environment is 

highlighted. 

Greedy Algorithms 

Greedy algorithms make a locally optimal 

choice with the hope that this choice will lead to 
a globally optimal solution. They are easy to 

design (for simple problems) and they can arrive 

at a locally optimal choice within a short period 

of time (Qian, Yu, & Tang, 2018). However, 
greedy algorithms sometimes fail to find the 

globally optimal solution because they make 

commitments to certain choices too early which 
prevents them from finding the best overall 

solution later. 

There are numerous improvements to the 
traditional, pure greedy algorithm. Two such 

improvements are the addition of the branch & 

bound concept and the relaxation concept (Ma 

& Liu, 2016). Decision-making problems 
involve the task of choosing “the best” amongst 

alternatives. Consequently, the act of choosing 

involves the concept of searching through 
numerous alternatives depending on the 

problem. These numerous alternatives can be 

organized in the form of a tree, hence the 

concept of a “tree search”. It is possible 
(although computationally expensive) to 

conduct an exhaustive tree search in the process 

of finding the most optimum choice to make. 
However, the branch &bound concept improves 

on this by applying pruning to focus only on the 

most promising area of the search tree (it 

reduces the search space). The branching splits 
the problem into several sub problems while the 

bounding finds an optimistic estimate of the 

sequence of choices made. 

On the other hand, the concept of relaxation 

involves making the problem easier to solve. It 

is through relaxation that a bigger portion of the 
search tree can be pruned before applying the 

branch & bound concept. The following three 

Sections describe further improvements to the 

traditional, pure greedy algorithm that apply 
branch & bound as well as relaxation. 

Constraint Programming 

Constraint Programming (CP) is a paradigm that 
defines the process of optimizing an objective 
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function with respect to some variables in the 

presence of constraints. These constraints are in 
the form of hard limits placed on the value of a 

variable. For example, (2) limits the possible 

values of a hardware’s configuration by stating 
that it cannot be above what that hardware can 

handle. It therefore constrains the possible 

values that can be assigned during the process of 

optimization. This can be represented 
graphically using a search engine and a 

constraint store as shown in Figure. below. 

There is continuous interaction between the 

search engine and the constraint store. The 

search engine continuously probes the constraint 

store to check if the value it has found for a 
variable is within the limits. Given adequate 

time to continuously probe, CP will find an 

optimal solution to an optimization problem (or 
conclude that there is no optimal solution). It is 

therefore a complete method and not a heuristic. 

 

Figure4. Graphical representation of constraint programming 

The computational paradigm of CP is based on 
the concept of branching and the concept of 

pruning. In this case, pruning involves the use of 

constraints to remove values that cannot belong 

to any solution.  

This is done through the process of feasibility 

checking and results in the reduction of the 

search space (Hahn-Goldberg, Beck, Carter, 
Trudeau, Sousa, & Beattie, 2014).  

Unlike branch & bound which focuses on 

bounding, CP focuses on feasibility checking. 

This enables its key benefit to be realized, that 
is, its ability to capture complex, idiosyncratic 

constraints. 

Mixed Integer Programming 

Mixed Integer Programming (MIP) borrows 

several concepts from linear programming. 

However, unlike linear programming, MIP 
allows for some of the constraints to be integers. 

In order to create a MIP model, decision 

variables, constraints, and an objective function 

are all required.  

Binary values are preferred when assigning 

values to these variables. Similar to other greedy 

algorithm improvements, MIP requires good 
linear relaxation in order to conduct effective 

pruning. However, a study by Hahn-Goldberg, 

et al. (2014) on chemotherapy outpatient 
scheduling provided evidence that showed that 

CP outperforms MIP. 

Local Search 

Local Search (LS) works with complete 

assignments to decision variables and 

continuously modifies them as it tends towards 

finding the optimum solution. The optimum 
solution in this case is defined by a local 

minima, that is, a position where every neighbor 

is worse off than the value under consideration. 
This is unlike CP which works with partial 

assignments to constraints and continuously 

checks to see if these assignments can be 

modified. In order to accomplish this, LS starts 
with suboptimal (infeasible) solutions and 

moves towards more optimal (feasible) solutions 

by performing local moves. A common 
approach to solving LS optimization problems is 

based on the max/min conflict concept as 

described below. 

Step Description 

I 

Choose the decision variable that appears 
the most in violations 

II 

Change the value in order to decrease the 

number of violations 

III 

Keep changing until the number of 

violations is the least (until you reach a 

local minima) 

IV 

Use the hypothesis to make predictions 

(deduction) 

  

Probabilistic Reasoning for Decision-Making 

Sullivan (2003) proposed a systematic approach 
to software tuning that can be applied to an 
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arbitrary software system. This methodology 

was based on the use of probabilistic and 
decision-making techniques that have been 

developed by researchers in Artificial 

Intelligence (AI), operations research, and other 
related fields. One of the distinct characteristics 

of the methodology is the interaction with 

domain experts during the initial stages to 

determine how the variables under consideration 
are inter-dependent or related to their parent and 

to their ancestors (conditional independencies).The 

methodology applies the acquisition of 

knowledge from domain experts as well as from 
intuitive notions of causality regarding how 

changing one variable affects other variables in 

the environment or decision situation. The 
methodology also applies probabilistic 

reasoning modeled by influence diagrams and 

thus outperforms the use of regression models 

which do not capture elements of the decision 
maker’s objective function (what to maximize 

or minimize). 

 

Figure5. System-monitor-tuner relationship 

 

Figure 6. Influence diagram for a Maria DB synchronous multi-master distributed database 

Influence diagrams can be used as a compact, 

graphical and mathematical representation of the 
decision situation. Influence diagrams are 

becoming a preferred alternative to traditional 

decision trees (Chajewska, 2000). This is 
because decision trees suffer from exponential 

growth in the number of branches with each 

variable modeled (Hansen, Shi, & Khaled, 

2016). In the case of this research, a monitor 

periodically or in real-time checks the system 
for any significant changes. If a significant 

change is detected, the monitor feeds the 

detected changes to the tuner.  

The tuner can then use an influence diagram 

together with a description of the current state 
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(workload characteristics) to determine the 

necessary adjustments to each of the 

configuration settings. Fig. shows the 

relationship between the system, monitor, and 

the tuner. Figure . models the complex, 

nonlinear relationship between the key 

parameters to be tuned in a storage server. 

CONCLUSION 

A study by Moreno, Papadopoulos, 

Angelopoulo, Cámara, & Schmerl (2017) 

pointed out that reactive autonomic computing 

systems are appropriate in situations where the 
time it takes for an adaptation to become 

effective in the system, that is, the adaptation 

latency, is low. However, the same is not true 
for systems which have a high adaptation 

latency.  

It is possible for such systems that have a high 

adaptation latency to be in a situation whereby 
the effects of adjusting configuration parameters 

in response are felt after the conditions that 

warranted the change in the first place are no 
longer present. 

This article proposes the need to move towards 

proactive and automatic performance tuning of 
servers as an opportunity to extend the research 

further.  

Even though one can attempt to argue that 

automation may lead to the loss of jobs, if used 
correctly, it saves on the labor requirements per 

unit of output produced. This saved labor can 

then be applied in other fields towards further 
advancement. 
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APPENDIX1.PARAMETERS TO BE CONSIDERED 

Table1. List of most critical parameters to be considered during performance tuning 

 Parameter Description 

1. innodb_buffer_pool_size 

Specifies the amount of main memory that can be used to store 

frequently used blocks of data and indexes. The larger the value, the 

more the quantity of data and indexes that can be stored in memory. 

This subsequently reduces the bottleneck caused by disk IO. An ideal 

value is 70-80% of the total available memory on a dedicated database 

server with primarily XtraDB or InnoDB tables. However, if the value 

of this parameter is too large, then memory swapping can occur which 

makes the performance of the server even worse. The tradeoff is that 

the larger the value of this parameter, the longer the server will take to 

initialize. 

Affected resource: main memory 

2. 
innodb_buffer_pool_insta

nces 

This parameter divides the InnoDB buffer pool into a specific number 

of instances such that each instance manages its own data structures 
and takes an equal portion of the total buffer pool size. This helps to 

reduce contention concurrency. An ideal value is greater than or equal 

to 1GB for each instance. For example, if the innodb_buffer_pool_size 

is 8GB, then there will be 8 instances each with a 1GB buffer pool 

when the innodb_buffer_pool_instances is set as 8. 

Affected resource: main memory 

3. innodb_old_blocks_pct 

The InnoDB buffer pool has two sub-lists. One sub-list for recently 

used information, and another sub-list for older information. By 

default, 37% of the list is reserved for the old list but this value can be 

changed by adjusting the value of the innodb_old_blocks_pct 

parameter. This value can be changed to anything between 5% and 

95%. A smaller old sub-list enables faster eviction of less frequently 
used data from the buffer pool, thus giving room for more frequently 

used data to be stored in the new sub-list. 

Affected resource: main memory 

4. innodb_old_blocks_time 

This parameter specifies the delay in milliseconds before a block can 

be moved from the old sub-list to the new sub-list in an Inno DB 

buffer pool. The default value (in Maria DB 5.5) is 0 which implies no 

delay, but this value can be set to a non-zero value as well. A non-zero 

delay helps in situations where full table scans are performed in quick 

succession. For example, when performing logical backups, full table 
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scans in quick succession are expected. In such cases, it is better to 

ensure that data which is accessed only once remains in the old sub-list 

so that it can be evicted from the buffer pool instead of being moved to 

the new sub-list. 

Affected resource: main memory 

5. 
innodb_buffer_pool_dum
p_at_shutdown 

This parameter enables the buffer pool state to be dumped into disk 

before the server is shutdown. It can be set to either ON or OFF. By 
default, it is OFF. 

Affected resource: main memory 

6. 
innodb_buffer_pool_load

_at_startup 

This parameter works with the previous parameter, i.e. 

innodb_buffer_pool_dump_at_shutdown to restore the buffer pool to 

the state it was in before the server was shutdown. It can be set to 

either ON or OFF and by default it is OFF. Setting 

innodb_buffer_pool_dump_at_shutdown and 

innodb_buffer_pool_load_at_startup to both ON eliminates the 

warmup time required for the buffer pool to identify and store the most 

frequently accessed data because it can pick up from where it left off 

before the server was shutdown. 

Affected resource: main memory 

7. query_cache_size 

Specifies the size in Bytes that is available forstoring the results of 
SELECT queries. Storing these results is useful for OLAP workloads 

that have a high-read and low-write environment. However, the query 

cache cannot be enabled in MariaDB Galera cluster versions prior to 

“5.5.40-galera”, “10.0.14-galera”, and “10.1.2”. An ideal value is to 

set query_cache_size=0 orquery_cache_type=OFFand use other 

techniques to increase the performance of OLAP workloads, e.g. good 

indexing, and setting up a load balancer to spread the read load. This is 

because the query cache is a well-known bottleneck. 

Affected resource: cache memory 

Affected workload: OLAP 

8. innodb_log_file_size 

Redo logs are used to make sure database writes are fast anddurable. 

They are also used during a recovery from a server crash however, 

larger log files can cause slower recovery in the event of a server 
crash. In as much as they can make recovery from a server slow, larger 

log files mean less disk I/O due to less flushing checkpoint 

activity.The size can be 1MB to 512GB (>= MariaDB 10.0) or 1MB to 

4GB (<= MariaDB 5.5) 

Affected resource: storage 

9. innodb_file_per_table 

This parameter allows some of the database tables to be kept in 

separate storage devices. This can greatly improve the I/O load on the 

storage. Default value is innodb_file_per_table=ON (>=MariaDB 5.5) 

and innodb_file_per_table=OFF (<=MariaDB 5.3) 

Affected resource: storage 

10. 
innodb_lock_wait_timeou

t 

This parameter sets the time in seconds that an InnoDB transaction 

waits for an InnoDB row lock before giving up with a “timeout 

exceeded” error. When the timeout is exceeded, the statement (not the 
transaction) is rolled back. OLAP workloads benefit from a high 

innodb_lock_wait_timeout. OLTP workloads on the other hand benefit 

from a low innodb_lock_wait_timeout. The default value is 

innodb_lock_wait_timeout=50 and the range is 0 to 1073741824 (>= 

MariaDB 10.3) and 1 to 1073741824 (<= MariaDB 10.2) 

Affected resource: CPU 

Affected workload: OLAP and OLTP 

11. thread_cache_size 

This parameter sets the number of threads that the server should cache 

for re-use. Increasing this parameter helps servers with high volumes 

of connections per second so that most connections can use a cached 

thread as opposed to a new thread. It can range from 0 to 16384. The 

default value is thread_cache_size=0 (<=MariaDB 10.1) and 

thread_cache_size=auto (from MariaDB 10.2.0) 
Affected resource: CPU 

Affected workload: OLTP 

12.&13 tmp-table-size and max- This parameter sets the default size of a temporary table. The 
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heap-table-size temporary tables are used when processing complex queries that 

involve joins and sorting. This parameter therefore helps to prevent 

disk writes. It should have the same size as max-heap-table-size. An 

ideal value is assigning 64MB for every GB of RAM on the server. 

Affected resource: main memory 

Affected workload: OLAP 

14. sort-buffer-size 

This parameter specifies the amount of memory in a buffer that is to 
be allocated to each session performing a sort operation. This value 

should be minimized for OLTP workloads that are known to have 

many small sorts. The default value is 2M, but an ideal minimum 

value is 16K. 

Affected resource: buffer memory 

Affected workload: OLTP 

15. join_buffer_size 

This parameter is used to set the size of the buffer used for queries that 

cannot use indexes and thus perform a full table scan. An ideal value is 

to minimize it globally and to set a high value for session that require 

large full joins. 

Affected resource: buffer memory 

Affected workload: OLAP 
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