
International Journal of Research Studies in Science, Engineering and Technology

Volume 5, Issue 9, 2018, PP 7-18

ISSN : 2349-476X

International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018 7

Scalability and Nonlinear Performance Tuning in Storage

Servers

Allan Odhiambo Omondi
1
, Ismail Ateya Lukandu

1
, Gregory Wabuke Wanyembi

2

1
Faculty of Information Technology, Strathmore University, Nairobi, Kenya

2
Department of Information Technology, Mount Kenya University, Thika, Kenya

*Corresponding Author: Allan Odhiambo Omondi, Strathmore University, Kenya. Email:aomondi

[at] strathmore.edu

INTRODUCTION

Automation forms an important foundation to
make progress in the evolution of human beings.

It saves on human resource as it reduces labor

requirements per unit of output produced. This
saved human resource can then be applied in

other fields towards further advancement. With

this in mind, there has been a continuous

demand for systems that can automatically
manage themselves given high-level objectives

from system administrators. This has led to the

advent of autonomic computing (Kephart &
Chess, 2003).Autonomic computing systems in

this case are systems that are expected to

automatically adapt by reacting to variable

environmental conditions and runtime
phenomena. This can be achieved through

adjusting their configuration parameters as an

adaptive response in order to discover the most
optimum configuration given the characteristics

of the current workload. This study therefore

seeks to answer the following two research
questions:

 What are the merits and demerits of

optimization techniques that can be used to

achieve load scalability in servers?

 What are the parameters that need to be

considered when performing configuration

optimization in storage servers?

Section 1 of this article provides a Literature
Review that focuses on the theoretical concepts

of scalability and performance tuning. Section 2

then provides a description of the methodology
that was applied to obtain the results. It does this

by providing a description of the high-level

architecture of the Maria DB Galera
synchronous, multi-master distributed database

that was used.

The methodology Section concludes with a

description of how a workload generator was
used to create training and test data. Section 3

provides the results as well as a discussion of

what the results mean.

The study submits a probabilistic reasoning

approach as opposed to the existing linear

optimization techniques. An influence diagram

is then used to model a stochastic, nonlinear
environment of the key configurations that

should be considered when conducting

performance tuning of storage servers. Section 4
concludes the article with a discussion of the

merits and demerits of automation.

ABSTRACT

The ability to scale in order to handle an increased amount of work is critical to both a business and its

Information Technology. However, there are diminishing returns as the number of scalability enhancements

are increased. This article submits the fact that there is a need to consider performance tuning as opposed

to only horizontal or vertical scalability. Optimization techniques based on a greedy algorithm are

reviewed. For example, Constraint Programming, Mixed Integer Programming, and Local Search. The

article further indicates that the complexities of performance tuning do not favor modeling it as a linear

process. It proposes the use of evidence-based, probabilistic reasoning for system administrators to identify

which parameters need to be tuned and how to tune them. An influence diagram is used as an example to

show the complexities involved when tuning one parameter has a high probability of affecting many other

parameters in the system.

Keywords: Maria DB, Influence Diagrams, Probabilistic Reasoning, Decision-Making, Optimization,

Greedy algorithms, Automation, Distributed databases

Scalability and Nonlinear Performance Tuning in Storage Servers

8 International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018

LITERATURE REVIEW

Scalability

Scalability can be defined as the capability of a

system to be enhanced to handle an increased

amount of work (Shahapure & Jayarekha,
2014). Author (2015) adds on to say that this is

done without impacting on its responsiveness to

execute any action within a given time interval.

The increased amount of work in the context of

a business can in turn be caused by many factors

including a peak season of sales or venturing
into a new market that increases the number of

clients to serve. It can also be based on an

expansion of the business by adding an

administrative unit that is either in the same
premise or in a geographically separate premise.

Enhancements of the system are usually made

by the system administrators and depend on the
system. For example, how a database server is

enhanced is different from how an application

server or a web server is enhanced. These
enhancements are geared towards increasing the

performance of a system which in turn enables it

to handle an increased amount of work. The

performance is in turn based on maximizing the
throughput and minimizing the response time. It

is also based on maximizing the resilience to

faults which can be achieved by not overloading

the system. Load balancing, especially in the
context of a distributed system, plays a critical

role in this case (Anjum & Patil, 2017).

There are two common techniques of enhancing
a system to accommodate a growing amount of

work: horizontal scaling and vertical scaling.

Horizontal scaling is the most common scaling

technique and is based on adding or removing
nodes from a system. As noted in a study on

cloud ecosystems by Anjum and Patil (2017),

the nodes can be in the form of Virtual
Machines (VMs) as opposed to physical

machines. In the case of physical machines,

system administrators can configure hundreds of
physical machines into a cluster to obtain an

aggregate computing power. This aggregate

computing power often exceeds that of

computers based on a single, traditional
processor. Horizontal scaling is however reliant

on a high-performance network such as Gigabit

Ethernet, Infinity Band, and Myrinet, amongst
others. Vertical scaling on the other hand,

maintains the number of nodes at a constant

level and instead adds or removes the amount of

resources that are allocated to each node. Fig

shows the difference between the two types of

scaling.

Figure1. Horizontal scaling versus vertical scaling

Vertical and horizontal scalability can in turn be

grouped into different perspectives depending

on what is being addressed. The first
perspective, administrative scalability, addresses

the capability of a system to maintain an

acceptable level of throughput, response time,
and resilience as the business expands across

numerous departments. If the expansion is

across multiple geographical regions, for
example in the case of new market entry, then it

is addressed by the perspective of geographic

scalability. The third perspective, functional

scalability, addresses the ability to enhance a

system by adding new functional requirements

at minimal effort. This article focuses on the

fourth perspective, which is load scalability.
Load scalability addresses the ability of a

system to expand or contract its resource pool to

accommodate a changing load. The resource
pool can be in the form of memory in a shared

memory architecture, or in the form of storage

in a shared storage architecture. Scalability is a
significant issue not only in technology, but also

in business. The number of clients demanding

for services has the potential of increasing in

cases where clients consider the services offered

Scalability and Nonlinear Performance Tuning in Storage Servers

International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018 9

by a business as valuable. Information

Technology applied in Computer-Based
Information Systems acts as a critical enabler to

assist a business to cope with the growing

demand for services. An increase in the number
of clients is good for business growth and

stability. Therefore, businesses in various

sectors of an economy desire the ability to

handle a growing number of clients; that is, the
ability to scale. Inability to cope with growth

can lead to loss of business (Rao, Murthy, &

Devi, 2018). The enabling infrastructure of a
business, usually in the form of cloud

computing, is expected to also scale to support

the business. It is therefore important for both
technology and businesses to be scalable.

Scalability is directly proportional to the amount

of energy consumed. This is especially true for

vertical scaling which results in high server
density in data centers. The increase in server

density has also been championed by

manufacturers who convince their clients to

utilize every available space in their data centers

given the Total Cost of Ownership (TCO)
required to maintain a data center. The TCO in

this case is distributed across three subsystems:

Information Technology (IT), power, and
cooling (Gomes, et al., 2017). The increase in

server density with the aim of scalability has led

to the energy consumption in data centers to be

quadrupled over the last decade. In fact, a study
by Afonso and Moreira (2017) showed that a

data center with 2,000 m
2
 and an energy

consumption density of 1,000 Wm
-2

 has a peak
cooling subsystem consumption that is

equivalent to a 20,000 m
2
 office building. And

this was the case without considering the IT and
power subsystems. Data centers consume 3% of

global electricity production and account for

200 million metric tons of CO2 (Rallo, 2014).

Given that energy efficiency is a priority for
competitiveness, there is a need for businesses

to achieve scalability in an energy efficient

manner.

Figure 2. Diminishing returns based on Amdahl’s Law

The marginal productivity or benefits of a

system gradually diminishes as the amount of
investment or enhancements are increased. This

is referred to as the law of diminishing returns

and is well-defined by Amdahl’s Law. The
addition of VMs in a cluster or the addition of

resources assigned to each VM in a cluster tends

towards either horizontal scalability or vertical
scalability respectively. A system can handle an

increase in the amount of work by distributing

portions of the work amongst either VMs in the
cluster or amongst the added resources in each

Scalability and Nonlinear Performance Tuning in Storage Servers

10 International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018

VM in the cluster. Suppose that a system can

handle an increase in workload by distributing
7

10
 of a program amongst VMs for parallel

processing instead of sequential processing in

one VM. If α is the fraction of the program that

is sequential and 1 − 𝛼 is the fraction of the

program that can be parallelized, then the

maximum throughput that can be achieved by 𝑥

units of VMs can be defined by Amdahl’s Law
as shown in (1).

1

𝛼+
1−𝛼

𝑥

 (1)

A graphical representation of this while holding
all other factors constant shows a clear

diminishing return as the number of scalability

enhancements increases exponentially, in a

cubic manner, or in a linear manner as shown in

Figure .

Performance Tuning

Performance tuning involves the
implementation of activities geared towards

improving a system’s capability of meeting its

non-functional requirements. The non-
functional requirements in this case include

performance that can be quantitatively measured

in form of response time latency and in the form
of transaction throughput. Developers of

complex systems intentionally expose a set of

configuration parameters to system

administrators. As explained by Sullivan (2003),
this is done because of the realization that a

system experiences numerous changes in

environmental variables as well as changes in
runtime phenomena which includes unexpected

input in form of a workload. The study further

implied that leaving a system to run without
continuously changing its default configurations

either reactively or proactively is not good

because it prevents it from handling unexpected

work loads (Sullivan, 2003). In other words, no
single configuration of a system caters for every

possible workload. Systems need to be

reconfigured or tuned from time to time to
enable them to adapt to constantly changing

environmental variables and runtime

phenomena.

Performance tuning is motivated by a
performance problem which is in turn based on

identifying a slow or unresponsive system. It is

this performance problem that acts as a starting
point for the measure-evaluate-improve-learn

cycle of quality assurance. It is important to

clearly identify the root cause of a problem

before attempting to address it (Dostál, 2014). It

is this early identification that provides the
solver with the required focus and saves on time

by ensuring the right thing is done

(effectiveness). The root cause of slow or
unresponsive systems is overloading which

causes some components of the system to reach

a limit in their ability to respond to subsequent

loads. Other components of the system may
remain idle as they wait for the overloaded

component to perform its task. This overloaded

component, the root cause of a performance
problem, is referred to as a bottleneck.

It is important to objectively identify the part of

a system that is critical for improving
performance. The most critical sections of the

system in this case are the bottlenecks, which

can be determined by using a profiler. A profiler

supports dynamic program analysis which is
conducted by instrumenting either the program

source code or its binary executable and

measuring Key Performance Indicators (KPIs)
at runtime.

This is as opposed to qualitatively and

subjectively guessing the bottlenecks of a

system. This study applied a periodic (non-
intrusive) sampling to measure KPIs. Common

measurable KPIs include space and time

complexity, and frequency and duration of
function calls. Zhang, Abbasi, Huck, and

Malony (2016), Rodrigues, dos Santos,

Guimaraes, Granville, and Tarouco (2014), and
Nataraj, Malony, Morris, Arnold, and Miller

(2010) showed that statistical profilers are less

intrusive to the target program because they rely

on periodic sampling.

This allows the target program to run at near

full-speed thus supporting the acquisition of a

more accurate picture of the target program’s
execution as well as its bottlenecks.

A performance problem motivates the need to

decide which parameters should be reconfigured
and how they should be reconfigured. Any

problem regarding decision-making involves the

task of choosing “the best” amongst alternatives.

The measure of goodness can be based on a pre-
defined objective such that the decision made is

the one that maximizes or minimizes this

objective.

For example, if the objective is to enable a

server to handle 200,000 queries per second,

then the best decision will be the one that

maximizes the number of queries per second.

Scalability and Nonlinear Performance Tuning in Storage Servers

International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018 11

This objective can be generalized to maximizing

efficiency and minimizing the error-rate.

According to Van Aken, Pavlo, Gordon, and

Zhang (2017) the efficiency can be

quantitatively measured based on response-time
latency and transaction throughput in the case of

storage servers. Response-time latency was

defined as the speed at which a storage server

can respond to a read request (commonly
associated with On-Line Analytical Processing

[OLAP] workloads). Transaction throughput on

the other hand was defined as the speed at which
a storage server can collect new data through

write requests (commonly associated with On-

Line Transaction Processing [OLTP]
workloads). Using a performance problem as the

foundation, it is possible to model the objective

as an optimization problem as shown in (2). The

following steps were applied to ensure
agreeability of the defined optimization

problem:

Table1. Modelling steps.

Step Description

I
Find out what are the decision variables (something that captures the real decisions you are interested

in, i.e. what to decide (what you will decide upon))

II
Model the problem constraints (tells you what you can do and what you cannot do – essentially

defines what can be accepted as a feasible solution, i.e. defines what is a solution)

III
Define the objective function (defines what you are trying to maximize or minimize, i.e. defines the

quality of your solution

Maximize:
(𝑡𝑝)𝑦𝑤 + 𝑟𝑝 𝑧𝑤

𝑒𝑝 + 𝑎𝑝

𝑝∈𝑇

𝑥𝑝

(2)
Subject to: 𝑉𝑝𝑖𝑥𝑝

𝑝∈𝑇

≤ Ki

Such that: xp , 𝑦𝑤 , 𝑧𝑤 ∈ 0,1 , 𝑝 ∈ 𝑇

This implies that the performance is maximized

subject to pre-defined constraints. The pre-

defined constraint specifies that if a parameter,

p, causes the value,𝑉 of a specific hardware 𝑖
(𝑉𝑝𝑖),to change, then the change should be less

than or equal to what the server hardware is

capable of handling for the hardware under

consideration, 𝐾𝑖 .This is on condition that the

decision to reconfigure parameter, 𝑝, that affects

hardware 𝑖 has been made, that is, on condition

that𝑥𝑝 = 1. If it has not been chosen, then

𝑥𝑝 = 0. Performance in such a system can be

measured by transaction throughput (𝑡𝑝) and

response time latency (𝑟𝑝). If the optimization is

meant for OLTP workloads, then the value of

𝑦𝑤 will be 1 and 𝑧𝑤 will be 0. On the other

hand, if the optimization is meant for OLAP

workloads, then the value of 𝑧𝑤 will be 1 and

𝑦𝑤 will be 0.

The optimization problem goes a step further to

define the negative effect that changing

parameter 𝑝 has on other parameters, that is, 𝑒𝑝 .

Lastly, 𝑎𝑝 represents the adaptation latency of

parameter 𝑝. The equation implies that to

maximize the performance, both 𝑒𝑝 and 𝑎𝑝

should be kept at minimum levels.

METHODOLOGY

Experiment Test Bed

The test-bed was made up of a cluster of nodes

that formed a synchronous, multi-master

distributed database with high-persistence

features based on a shared-nothing architecture.
The shared-nothing architecture enabled the

system to work with inexpensive hardware that

met at least the minimum requirements for a
Maria DB Galera Cluster. The shared-nothing

architecture also contributed towards the

elimination of a single-point-of-failure because
each node in the cluster had its own inexpensive

combination of CPU, storage, and memory. Fig

below depicts the architecture of the test bed.

Training and Testing Data

Spawner workload generator was used to create

the dataset. 75% of the dataset was used as

training data. The training data was fed into the
test bed in order to simulate a real-world

scenario. Periodic performance measurements

were then conducted in favor of continuous

performance measurements which can
negatively impact the performance of a system

in production. The results of the periodic

Scalability and Nonlinear Performance Tuning in Storage Servers

12 International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018

performance measurements were then used to

identify the vital parameters that should be
involved in the influence diagram.

The remaining 25% of the dataset was used as

test data. The test data was required to confirm
intuitive and learned notions of causality. This

was accomplished through maximum likelihood

estimation by first discretizing continuous

variables, and then recording the frequency of

occurrence between the values of a node and the
combination of the values of its parent(s). The

75:25 training:test data ratio has been used

successfully in previous research such as by
Feng, et al. (2016) and Shinde and Channe

(2018).

Figure 3. Architecture of the experiment’s test bed

RESULTS AND DISCUSSION

Part of the following Sections provide a review

of literature on the most common optimization

techniques. These are based on greedy

algorithms and the branch & bound and
relaxation concepts. Constraint Programming as

well as Mixed Integer Programming are

reviewed as techniques that guarantee high
quality. Local Search on the other hand is

reviewed as a technique that guarantees

scalability. The last Section then submits an
approach that is based on probabilistic

reasoning. The key advantage of its ability to

model a stochastic, non-linear environment is

highlighted.

Greedy Algorithms

Greedy algorithms make a locally optimal

choice with the hope that this choice will lead to
a globally optimal solution. They are easy to

design (for simple problems) and they can arrive

at a locally optimal choice within a short period

of time (Qian, Yu, & Tang, 2018). However,
greedy algorithms sometimes fail to find the

globally optimal solution because they make

commitments to certain choices too early which
prevents them from finding the best overall

solution later.

There are numerous improvements to the
traditional, pure greedy algorithm. Two such

improvements are the addition of the branch &

bound concept and the relaxation concept (Ma

& Liu, 2016). Decision-making problems
involve the task of choosing “the best” amongst

alternatives. Consequently, the act of choosing

involves the concept of searching through
numerous alternatives depending on the

problem. These numerous alternatives can be

organized in the form of a tree, hence the

concept of a “tree search”. It is possible
(although computationally expensive) to

conduct an exhaustive tree search in the process

of finding the most optimum choice to make.
However, the branch &bound concept improves

on this by applying pruning to focus only on the

most promising area of the search tree (it

reduces the search space). The branching splits
the problem into several sub problems while the

bounding finds an optimistic estimate of the

sequence of choices made.

On the other hand, the concept of relaxation

involves making the problem easier to solve. It

is through relaxation that a bigger portion of the
search tree can be pruned before applying the

branch & bound concept. The following three

Sections describe further improvements to the

traditional, pure greedy algorithm that apply
branch & bound as well as relaxation.

Constraint Programming

Constraint Programming (CP) is a paradigm that
defines the process of optimizing an objective

Scalability and Nonlinear Performance Tuning in Storage Servers

International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018 13

function with respect to some variables in the

presence of constraints. These constraints are in
the form of hard limits placed on the value of a

variable. For example, (2) limits the possible

values of a hardware’s configuration by stating
that it cannot be above what that hardware can

handle. It therefore constrains the possible

values that can be assigned during the process of

optimization. This can be represented
graphically using a search engine and a

constraint store as shown in Figure. below.

There is continuous interaction between the

search engine and the constraint store. The

search engine continuously probes the constraint

store to check if the value it has found for a
variable is within the limits. Given adequate

time to continuously probe, CP will find an

optimal solution to an optimization problem (or
conclude that there is no optimal solution). It is

therefore a complete method and not a heuristic.

Figure4. Graphical representation of constraint programming

The computational paradigm of CP is based on
the concept of branching and the concept of

pruning. In this case, pruning involves the use of

constraints to remove values that cannot belong

to any solution.

This is done through the process of feasibility

checking and results in the reduction of the

search space (Hahn-Goldberg, Beck, Carter,
Trudeau, Sousa, & Beattie, 2014).

Unlike branch & bound which focuses on

bounding, CP focuses on feasibility checking.

This enables its key benefit to be realized, that
is, its ability to capture complex, idiosyncratic

constraints.

Mixed Integer Programming

Mixed Integer Programming (MIP) borrows

several concepts from linear programming.

However, unlike linear programming, MIP
allows for some of the constraints to be integers.

In order to create a MIP model, decision

variables, constraints, and an objective function

are all required.

Binary values are preferred when assigning

values to these variables. Similar to other greedy

algorithm improvements, MIP requires good
linear relaxation in order to conduct effective

pruning. However, a study by Hahn-Goldberg,

et al. (2014) on chemotherapy outpatient
scheduling provided evidence that showed that

CP outperforms MIP.

Local Search

Local Search (LS) works with complete

assignments to decision variables and

continuously modifies them as it tends towards

finding the optimum solution. The optimum
solution in this case is defined by a local

minima, that is, a position where every neighbor

is worse off than the value under consideration.
This is unlike CP which works with partial

assignments to constraints and continuously

checks to see if these assignments can be

modified. In order to accomplish this, LS starts
with suboptimal (infeasible) solutions and

moves towards more optimal (feasible) solutions

by performing local moves. A common
approach to solving LS optimization problems is

based on the max/min conflict concept as

described below.

Step Description

I

Choose the decision variable that appears
the most in violations

II

Change the value in order to decrease the

number of violations

III

Keep changing until the number of

violations is the least (until you reach a

local minima)

IV

Use the hypothesis to make predictions

(deduction)

Probabilistic Reasoning for Decision-Making

Sullivan (2003) proposed a systematic approach
to software tuning that can be applied to an

Scalability and Nonlinear Performance Tuning in Storage Servers

14 International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018

arbitrary software system. This methodology

was based on the use of probabilistic and
decision-making techniques that have been

developed by researchers in Artificial

Intelligence (AI), operations research, and other
related fields. One of the distinct characteristics

of the methodology is the interaction with

domain experts during the initial stages to

determine how the variables under consideration
are inter-dependent or related to their parent and

to their ancestors (conditional independencies).The

methodology applies the acquisition of

knowledge from domain experts as well as from
intuitive notions of causality regarding how

changing one variable affects other variables in

the environment or decision situation. The
methodology also applies probabilistic

reasoning modeled by influence diagrams and

thus outperforms the use of regression models

which do not capture elements of the decision
maker’s objective function (what to maximize

or minimize).

Figure5. System-monitor-tuner relationship

Figure 6. Influence diagram for a Maria DB synchronous multi-master distributed database

Influence diagrams can be used as a compact,

graphical and mathematical representation of the
decision situation. Influence diagrams are

becoming a preferred alternative to traditional

decision trees (Chajewska, 2000). This is
because decision trees suffer from exponential

growth in the number of branches with each

variable modeled (Hansen, Shi, & Khaled,

2016). In the case of this research, a monitor

periodically or in real-time checks the system
for any significant changes. If a significant

change is detected, the monitor feeds the

detected changes to the tuner.

The tuner can then use an influence diagram

together with a description of the current state

Scalability and Nonlinear Performance Tuning in Storage Servers

International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018 15

(workload characteristics) to determine the

necessary adjustments to each of the

configuration settings. Fig. shows the

relationship between the system, monitor, and

the tuner. Figure . models the complex,

nonlinear relationship between the key

parameters to be tuned in a storage server.

CONCLUSION

A study by Moreno, Papadopoulos,

Angelopoulo, Cámara, & Schmerl (2017)

pointed out that reactive autonomic computing

systems are appropriate in situations where the
time it takes for an adaptation to become

effective in the system, that is, the adaptation

latency, is low. However, the same is not true
for systems which have a high adaptation

latency.

It is possible for such systems that have a high

adaptation latency to be in a situation whereby
the effects of adjusting configuration parameters

in response are felt after the conditions that

warranted the change in the first place are no
longer present.

This article proposes the need to move towards

proactive and automatic performance tuning of
servers as an opportunity to extend the research

further.

Even though one can attempt to argue that

automation may lead to the loss of jobs, if used
correctly, it saves on the labor requirements per

unit of output produced. This saved labor can

then be applied in other fields towards further
advancement.

REFERENCES

[1] Afonso, C., & Moreira, J. (2017). Data center:

Energetic and economic analysis of a more
efficient refrigeration system with free cooling

and the avoided CO2 emissions. International

Journal of Engineering Research and

Application, 7(11), 1-7.

[2] Anjum, A., & Patil, R. (2017). Load balancing

for cloud ecosystem using energy aware

application scaling methodologies.

International Research Journal of Engineering

and Technology, 4(5), 479-482.

[3] Autor, D. (2015). Why are there still so many

jobs? The history and future of workplace
automation. The Journal of Economic

Perspectives, 29(3), 3-30.

[4] Chajewska, U. K. (2000). Making rational

decisions using adaptive utility elicitation. In

AAAI/IAAI (pp. 363-369). American

Association for Artificial Intelligence, (pp. 363-

369).

[5] Dostál, J. (2014). Theory of problem solving.

Procedia-Social and Behavioral Sciences,

174(1), 2798-2805.

[6] Feng, Q. Y., Vasile, R., Segond, M.,

Gozolchiani, A., Wang, Y., Abel, M., &

Dijkstra, H. A. (2016). ClimateLearn: A

machine-learning approach for climate

prediction using network measures.

Geoscientific Model Development.

[7] Gomes, D. M., Endo, P. T., Gonçalves, G.,

Rosendo, D., Santos, G. L., Kelner, J., . . .

Mahloo, M. (2017). Evaluating the cooling

subsystem availability on a cloud data center.

2017 IEEE Symposium on Computers and

Communications (ISCC) (pp. 736-741). IEEE

[8] Hahn-Goldberg, S., Beck, J. C., Carter, M. W.,

Trudeau, M., Sousa, P., & Beattie, K. (2014).

Solving the chemotherapy outpatient

scheduling problem with constraint

programming. Journal of Applied Operational

Research, 6(3), 135-144.

[9] Hansen, E. A., Shi, J., & Khaled, A. (2016). A

POMDP Approach to Influence Diagram

Evaluation. International Joint Conference on

Artificial Intelligence, (pp. 3124-3132).

[10] Kephart, J. O., & Chess, D. M. (2003). The
vision of autonomic computing. Computer,

36(1), 41-50.

[11] Ma, X. G., & Liu, X. (2016). A new branch and

bound algorithm for integer quadratic

programming problems. Journal of Nonlinear

Science and Applications, 1153-1164.

[12] Moreno, G. A., Papadopoulos, A. V.,

Angelopoulo, K., Cámara, J., & Schmerl, B.

(2017). Comparing Model-Based Predictive

Approaches to Self-Adaptation: CobRA and

PLA. 12th International Symposium on

Software Engineering for Adaptive and Self-
Managing Systems.

[13] Nataraj, A., Malony, A. D., Morris, A., Arnold,

D. C., & Miller, B. P. (2010). A framework for

scalable, parallel performance monitoring.

Concurrency and Computation: Practice and

Experience, 22(6), 720-735.

[14] Qian, C., Yu, Y., & Tang, K. (2018).

Approximation Guarantees of Stochastic

Greedy Algorithms for Subset Selection.

Twenty-Seventh International Joint Conference

on Artificial Intelligence, (pp. 1478-1484).

[15] Rallo, A. (2014, March). Industry Outlook:

Data center energy efficiency. Retrieved

September 24, 2018, from Data Center Journal:

http://www.datacenterjournal.com/industry-

outlook-data-center-energy-efficiency/

Scalability and Nonlinear Performance Tuning in Storage Servers

16 International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018

[16] Rao, G., Murthy, N. V., & Devi, G. L. (2018).

A Theoretical Model to Provide Security for

Remote Location Aware Cloud Data Centre.

International Journal of Scientific Research in

Computer Science, Engineering and
Information Technology, 3(2), 232-236.

[17] Rodrigues, G. D., dos Santos, G. L.,

Guimaraes, V. T., Granville, L. Z., & Tarouco,

L. M. (2014). An architecture to evaluate

scalability, adaptability and accuracy in cloud

monitoring systems. International Conference

on Information Networking (ICOIN) (pp. 46-

51). IEEE.

[18] Shahapure, N. H., & Jayarekha, P. (2014). Load

balancing in cloud computing: A survey.

International Journal of Advances in

Engineering & Technology, 6(6), 2657-2664.

[19] Shinde, M. P., & Channe, H. (2018). Semi-

supervised Learning with Ensemble Method for

Online Deceptive Review Detection.

International Journal of Scientific Research in

Computer Science, Engineering and

Information Technology, 3(6), 415-422.

[20] Sullivan, D. G. (2003). Using probabilistic

reasoning to automate software tuning.

Doctoral Dissertation, Harvard University,

Computer Science Group, Cambridge,
Massachusetts. Retrieved October 01, 2018,

from

https://www.researchgate.net/profile/David_Sul

livan16/publication/221595676_Using_probabi

listic_reasoning_to_automate_software_tuning/

links/55cb36dc08aeb975674ad1d3.pdf

[21] Van Aken, D., Pavlo, A., Gordon, G. J., &

Zhang, B. (2017). Automatic database

management system tuning through large-scale

machine learning. ACM International

Conference on Management of Data (pp. 1009-

1024). Association for Computing Machinery.

[22] Zhang, X., Abbasi, H., Huck, K., & Malony, A.

D. (2016). WOWMON: A machine learning-

based profiler for self-adaptive instrumentation

of scientific workflows. Procedia Computer

Science, 80, 1507-1518.

APPENDIX1.PARAMETERS TO BE CONSIDERED

Table1. List of most critical parameters to be considered during performance tuning

 Parameter Description

1. innodb_buffer_pool_size

Specifies the amount of main memory that can be used to store

frequently used blocks of data and indexes. The larger the value, the

more the quantity of data and indexes that can be stored in memory.

This subsequently reduces the bottleneck caused by disk IO. An ideal

value is 70-80% of the total available memory on a dedicated database

server with primarily XtraDB or InnoDB tables. However, if the value

of this parameter is too large, then memory swapping can occur which

makes the performance of the server even worse. The tradeoff is that

the larger the value of this parameter, the longer the server will take to

initialize.

Affected resource: main memory

2.
innodb_buffer_pool_insta

nces

This parameter divides the InnoDB buffer pool into a specific number

of instances such that each instance manages its own data structures
and takes an equal portion of the total buffer pool size. This helps to

reduce contention concurrency. An ideal value is greater than or equal

to 1GB for each instance. For example, if the innodb_buffer_pool_size

is 8GB, then there will be 8 instances each with a 1GB buffer pool

when the innodb_buffer_pool_instances is set as 8.

Affected resource: main memory

3. innodb_old_blocks_pct

The InnoDB buffer pool has two sub-lists. One sub-list for recently

used information, and another sub-list for older information. By

default, 37% of the list is reserved for the old list but this value can be

changed by adjusting the value of the innodb_old_blocks_pct

parameter. This value can be changed to anything between 5% and

95%. A smaller old sub-list enables faster eviction of less frequently
used data from the buffer pool, thus giving room for more frequently

used data to be stored in the new sub-list.

Affected resource: main memory

4. innodb_old_blocks_time

This parameter specifies the delay in milliseconds before a block can

be moved from the old sub-list to the new sub-list in an Inno DB

buffer pool. The default value (in Maria DB 5.5) is 0 which implies no

delay, but this value can be set to a non-zero value as well. A non-zero

delay helps in situations where full table scans are performed in quick

succession. For example, when performing logical backups, full table

Scalability and Nonlinear Performance Tuning in Storage Servers

International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018 17

scans in quick succession are expected. In such cases, it is better to

ensure that data which is accessed only once remains in the old sub-list

so that it can be evicted from the buffer pool instead of being moved to

the new sub-list.

Affected resource: main memory

5.
innodb_buffer_pool_dum
p_at_shutdown

This parameter enables the buffer pool state to be dumped into disk

before the server is shutdown. It can be set to either ON or OFF. By
default, it is OFF.

Affected resource: main memory

6.
innodb_buffer_pool_load

_at_startup

This parameter works with the previous parameter, i.e.

innodb_buffer_pool_dump_at_shutdown to restore the buffer pool to

the state it was in before the server was shutdown. It can be set to

either ON or OFF and by default it is OFF. Setting

innodb_buffer_pool_dump_at_shutdown and

innodb_buffer_pool_load_at_startup to both ON eliminates the

warmup time required for the buffer pool to identify and store the most

frequently accessed data because it can pick up from where it left off

before the server was shutdown.

Affected resource: main memory

7. query_cache_size

Specifies the size in Bytes that is available forstoring the results of
SELECT queries. Storing these results is useful for OLAP workloads

that have a high-read and low-write environment. However, the query

cache cannot be enabled in MariaDB Galera cluster versions prior to

“5.5.40-galera”, “10.0.14-galera”, and “10.1.2”. An ideal value is to

set query_cache_size=0 orquery_cache_type=OFFand use other

techniques to increase the performance of OLAP workloads, e.g. good

indexing, and setting up a load balancer to spread the read load. This is

because the query cache is a well-known bottleneck.

Affected resource: cache memory

Affected workload: OLAP

8. innodb_log_file_size

Redo logs are used to make sure database writes are fast anddurable.

They are also used during a recovery from a server crash however,

larger log files can cause slower recovery in the event of a server
crash. In as much as they can make recovery from a server slow, larger

log files mean less disk I/O due to less flushing checkpoint

activity.The size can be 1MB to 512GB (>= MariaDB 10.0) or 1MB to

4GB (<= MariaDB 5.5)

Affected resource: storage

9. innodb_file_per_table

This parameter allows some of the database tables to be kept in

separate storage devices. This can greatly improve the I/O load on the

storage. Default value is innodb_file_per_table=ON (>=MariaDB 5.5)

and innodb_file_per_table=OFF (<=MariaDB 5.3)

Affected resource: storage

10.
innodb_lock_wait_timeou

t

This parameter sets the time in seconds that an InnoDB transaction

waits for an InnoDB row lock before giving up with a “timeout

exceeded” error. When the timeout is exceeded, the statement (not the
transaction) is rolled back. OLAP workloads benefit from a high

innodb_lock_wait_timeout. OLTP workloads on the other hand benefit

from a low innodb_lock_wait_timeout. The default value is

innodb_lock_wait_timeout=50 and the range is 0 to 1073741824 (>=

MariaDB 10.3) and 1 to 1073741824 (<= MariaDB 10.2)

Affected resource: CPU

Affected workload: OLAP and OLTP

11. thread_cache_size

This parameter sets the number of threads that the server should cache

for re-use. Increasing this parameter helps servers with high volumes

of connections per second so that most connections can use a cached

thread as opposed to a new thread. It can range from 0 to 16384. The

default value is thread_cache_size=0 (<=MariaDB 10.1) and

thread_cache_size=auto (from MariaDB 10.2.0)
Affected resource: CPU

Affected workload: OLTP

12.&13 tmp-table-size and max- This parameter sets the default size of a temporary table. The

Scalability and Nonlinear Performance Tuning in Storage Servers

18 International Journal of Research Studies in Science, Engineering and Technology V5 ● I9 ● 2018

heap-table-size temporary tables are used when processing complex queries that

involve joins and sorting. This parameter therefore helps to prevent

disk writes. It should have the same size as max-heap-table-size. An

ideal value is assigning 64MB for every GB of RAM on the server.

Affected resource: main memory

Affected workload: OLAP

14. sort-buffer-size

This parameter specifies the amount of memory in a buffer that is to
be allocated to each session performing a sort operation. This value

should be minimized for OLTP workloads that are known to have

many small sorts. The default value is 2M, but an ideal minimum

value is 16K.

Affected resource: buffer memory

Affected workload: OLTP

15. join_buffer_size

This parameter is used to set the size of the buffer used for queries that

cannot use indexes and thus perform a full table scan. An ideal value is

to minimize it globally and to set a high value for session that require

large full joins.

Affected resource: buffer memory

Affected workload: OLAP

Citation: Omondi, A. O., Lukandu, I. A., & Wanyembi G. W. (2018)." Scalability and Nonlinear

Performance Tuning in Storage Servers",International Journal of Research Studies in Science, Engineering

and Technology, vol. 5, no. 9, pp. 7-18, 2018.

Copyright: © 2018 Omondi, A. O. This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

