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Abstract: This paper aims to optimally design reinforced concrete non-slender columns by using genetic 

algorithms and explore the effects of the compressive strength of concrete, yield strength of steel, the depth of 

neutral axis as well as the crossover rate and number of elites of the genetic algorithms on the optimal results. 

Given conditions are the factored axial load, depth of the neutral axis, compressive strength of concrete and 

yield strength of steel, length of the column and the size of longitudinal reinforcement and lateral ties. The 

constraints are built according to the ACI code requirements, by considering the strength requirements of 

combined axial load and bending, longitudinal reinforcement ratio and clear distance between longitudinal 

bars. The objective function is to minimize the total cost of longitudinal steel bars, lateral ties and concrete of 

the column; design variables consist of the column size and number of the tensile reinforcement and 

compressive reinforcement, all of which are discrete. There are a large number of columns designed in this 

paper. The numerical results show that different crossover rate or different number of elites always leads to the 

same optimal results; the higher the compressive strength of concrete is, the lower the minimum cost becomes. 

However, the yield strength of steel doesn’t have the tendency to increase or reduce the optimal cost. In 

addition, it is also found that the larger the depth of the neutral axis, the smaller the eccentricity becomes and 

the lower the minimum cost turns out.   
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1. INTRODUCTION 

Over the past few decades, many mathematical programming methods have been developed to solve 

optimization problems, such as calculus-based methods, numerical methods, and random search 

methods. The calculus-based methods rely mainly on the existence of derivative and smoothness of 

constraints and objective function, but problems in the real world usually have discontinuities and 

noisy spaces. The numerical methods can find the optimal value in each space point one at a time, 

which is very effective when the number of possibilities is very small, but in the big or highly 

dimensional space it turns very hard to locate the optimal value. Due to the disadvantages of the 

calculus-based and the numerical methods, the random search methods have gradually become more 

popular. Random search algorithms are the algorithms involving randomness or probability. They are 

useful for poorly structured global optimization problems, where the objective function is nonconvex, 

nondifferentiable, or discontinuous over a continuous, discrete, or mixed continuous-discrete domain. 

They have been widely applied to a lot of continuous and discrete global optimization problems [1-3].  

Genetic algorithms, one of the random search methods, are based on Darwin’s principles of natural 

selection [4] and Fisher’s genetic theory of the natural selection [5]. They were developed by Holland 

[6] and described in more detail by Goldberg [7]. Genetic algorithms use random selection to 

optimize an objective function with respect to variables in the presence of constraints on those 

variables and have been proven successful for robust searches in complex spaces [8]. There are a 

number of applications of genetic algorithms in the civil engineering, such as structural reliability 
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analysis [9], optimization of grillages [10], optimization of trusses with a modified genetic algorithm 

[11], optimization of pile groups by hybrid genetic algorithms [12], optimization of topology and 

nodal positions of grid shell structures [13] and optimal design of reinforced concrete cantilever 

beams [14].  

2. GENETIC ALGORITHMS 

Genetic algorithms play an important role as random search techniques for dealing with complex 

spaces in many fields. They are one of the best ways to solve the optimization problems whose 

derivatives are very complicated or difficult to find, and are capable of solving constrained or 

unconstrained optimization problems, whose constraints can be linear or nonlinear with bounds on the 

design variables. They use the principles of selection and evolution and work with a set of potential 

solutions (population) instead of trying to improve a single solution. Natural selection occurs at every 

life stage of a creature. Over time, creatures change to adapt to the environment to survive and thrive. 

In many species, adults must compete with each other. The longer they can survive and the more 

competitive they are, the more offspring they will reproduce. The evolution usually starts from a 

population of randomly generated individuals. In each generation, the fitness (the objective function 

value) of every individual (solution) in the population is evaluated. Multiple individuals are 

stochastically selected from the current population based on their fitness, recombined and randomly 

mutated to form a new population. A small portion of fittest individuals called elites are kept 

unchanged and passed on to the next generation. The new population is then used in the next iteration 

of the algorithm. The algorithm stops when one of the stopping criteria is met, such as the number of 

generation, the weighted average change in the fitness function value over some generations less than 

a specified tolerance, no improvement in the best fitness value for an interval of time, etc. The 

MATLAB Global Optimization Toolbox [15] is employed in this paper to carry out the genetic 

algorithms. In most engineering problems, the design variables are discrete and genetic algorithms are 

exactly very good at coping with discrete variables. 

3. DESIGN OF REINFORCED CONCRETE COLUMNS 

The reinforced concrete columns considered in this paper are non-slender columns whose behavior is 

controlled by material failure. Given conditions are the factored axial load Pu, neutral axis depth x, 

compressive strength of concrete cf  and yield strength of steel fy, unsupported length of the column 

and size of longitudinal reinforcement and lateral ties. The constraints are built according to ACI 

Building Code Requirements for Structural Concrete and Commentary [16], by considering the 

strength requirements of combined axial load and bending moment, longitudinal reinforcement ratio 

and the clear distance between longitudinal bars. The objective function is to minimize the total cost 

of longitudinal steel bars, lateral ties and concrete of the column with clear height ln; discrete design 

variables are the width b and thickness h of the column as well as the number of the tensile 

reinforcement N1 and the number of compressive reinforcement N2. The column geometry is shown in 

Fig. 1, where e is the eccentricity, d the effective depth, N.A. neutral axis, P.C. the plastic centroid 

and As and sAare the areas of tension and compression reinforcement, respectively. The units of force 

and length in the following formulas are kgf (=9.81N) and cm, respectively. The constraints required 

for genetic algorithms are listed as follows. 



Jiin-Po Yeh & Hsie-Ming Hsia

 

 
International Journal of Research Studies in Science, Engineering and Technology [IJRSSET]               3  

 

(a)                                                   (b) 

Fig1. Column geometry: (a) plane; (b) elevation 

3.1. Combined Compression and Bending  

Let 1 be concrete stress block depth factor and Es the modulus of elasticity of steel. The nominal axial 

load strength is defined as 

  T-C+CP sscn                                                                                                                                  (1) 

where xbf0.85C cc 1 , )csss f0.85-f(AC   and sss fAT  .The stress sf   in the compression 

reinforcement can be expressed as 

yss f
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                                                                                                                 (2) 

and the stress sf in the tension reinforcement is given by  
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x
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                                                                                                                 (3) 

The moment about the tension reinforcement becomes  

          )d-(dC)
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The eccentricity e is not independent and can be found by substituting Eqs. (1) to (3) into Eq. (4). In 

practice, eccentricities are unavoidable due to slight inaccuracies in the layout of columns, 

unsymmetrical loading of slabs in adjacent spans, imperfections in the alignment, etc. Hence, the ACI 

code specifies a reduction of 20% in the axial load for tied columns, i.e., the maximum nominal axial 

load capacity   

)]   0.85f-)(fAAA0.8[0.85fP '

cy

'

ssg

'

cn  (max,                                                                            (5)  

where Ag=bh is the gross area of the concrete section. Hence, the constraints for the combined axial 

load and moment are written as  
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max,nn PP                                                                                                                                               (6) 

Pu  Pn                                                                                                                                                                                 (7) 

and     Pu e =Mu  Mn =  (Pn)e                                                                                                           (8) 

where Pu is the factored axial load, Mu is the maximum factored moment the column can be subjected 

to and the strength reduction factor 
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                                                                                                      (9) 

provided that s and y are tensile strain and yield strain in the tension reinforcement, respectively. In 

fact, if Eq. (7) is satisfied, Eq. (8) will be automatically satisfied.  

3.2. Longitudinal Reinforcement Ratio 

Most columns are subjected to both axial load and moment. To ensure some ductility, a minimum of 

1% reinforcement must be provided and to avoid reinforcement congestion the reinforcement should 

not be more than 8%; therefor, the total amount of reinforcement in the column has to satisfy the 

following condition  

08.001.0 



g

ss

A

AA
                                                                                                                       (10) 

where As =N1Ab and N2Ab provided that Ab is the cross-sectional area of reinforcement.  

3.3. Clear Distance between Longitudinal Bars 

To prevent honeycombing and ensure that the wet concrete mix passes through the steel bars without 

separation, the requirement for the clear distance S1 between longitudinal bars is given by  

cmdS b )81.3,5.1(max1                                                                                                               (11) 

where db is the diameter of the longitudinal bar.  

3.4. The Slenderness Effect 

For unbraced columns, the slenderness effect can be neglected if the slenderness ratio 

22
r

klu                                                                                                                                              (12) 

where k is the effective length factor and is taken as 1 in this paper, lu is the unsupported length of the 

column, r is the radius of gyration.  

3.5. The Spacing of the Ties 

Tied columns have closed lateral ties spaced uniformly across the column. The spacing of the ties 

must be close enough to prevent spalling of the concrete cover or local buckling of the longitudinal 

bars and far enough not to interfere with the setting of the concrete. The ACI code specifies that 

vertical spacing of ties shall not exceed 16 times the longitudinal bar diameter, 48 times the tie bar 

diameter or least lateral dimension of the column; therefore, the spacing of the ties is equal to 

S2 = min (16db, 48dbt, b) cm                                                                                                                 (13) 

where dbt is the diameter of the tie. After the spacing of the ties is known, the total number of ties 

along the unsupported length of the column can then be calculated. 
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4. NUMERICAL RESULTS 

This paper uses genetic algorithms to optimally design reinforced concrete non-slender columns, 

where the unsupported length of the column is assumed to be 350 cm, the concrete cover is 4 cm and 

No. 8 longitudinal bars and No. 4 ties are used. Given conditions are factored axial load Pu, neutral 

axis depth x, compressive strength of concrete cf   and yield strength of steel fy. Discrete design 

variables are the width b and thickness h of the column as well as the number N1 of the tensile 

reinforcement and the number N2 of compressive reinforcement. Based on the often-used materials 

and customs in Taiwan, this paper selects three kinds of yield strength fy of the longitudinal 

reinforcement: 2800 kgf/cm
2
 (40 ksi), 3500 kgf/cm

2
 (50 ksi) and 4200 kgf/cm

2
 (60 ksi) whose price is 

13200 NT$/ton as well as four kinds of compressive strength fc of the concrete: 210 kgf/cm
2
 (3000 

psi), 280 kgf/cm
2
 (4000 psi), 350 kgf/cm

2
 (5000 psi) and 420 kgf/cm

2
 (6000 psi) whose prices are 

1950 NT$/m
3
, 2150 NT$/m

3
, 2350 NT$/m

3
 and 2450 NT$/m

3
, respectively. There are seven kinds of 

neutral axis depth x: 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, 35 cm and 40 cm; five kinds of factored 

load: 100ton, 150ton, 200ton, 250ton and 300ton. Based on the reasonable combinations of the above-

mentioned values, there are totally 290 cases selected to be designed in this paper. 

This paper employs the MATLAB global optimization toolbox to carry out genetic algorithms. The 

constraints and objective function for the algorithms are built according to the discussion in Section 3. 

Given the factored axial load Pu=150 ton, neutral axis depth x=15 cm, compressive strength of 

concrete cf  =280 kgf/cm
2
 and yield strength of steel fy=4200 kgf/cm

2
, this paper first lets the 

crossover rate range from 0.75 to 0.9 and the number of elites from 2 to 10 in a bid to explore their 

effects on the optimal results. It turns out that different crossover rates and elites always lead to the 

same results: b=43 cm, h=54cm, N1=2, N2 = 5 and the cost=3199 NT$. To run genetic algorithms of 

the MATLAB software, some parameters need to be specified beforehand, here are the values 

selected: the population size =100, crossover rate = 0.8 and elite number = 10. Furthermore, all the 

individuals (solutions) are encoded as integers; “Rank” is used as the scaling function that scales the 

fitness values based on the rank of each individual; “Roulette” is the selection function to choose 

parents for the next generation; “Two-point crossover” is used as the crossover method to form a new 

child for the next generation; The “Adaptive Feasible Function” is chosen as the mutation function to 

make small random changes in the individuals and ensure that linear constraints and bounds are 

satisfied. In order to reach the global minimum, genetic algorithms are executed 20 times for each 

case. Among the results of 20 executions, the minimum cost is taken as the optimal result for this 

case. For example, Table 1 shows the 20 results for the case of fc′= 280 kgf/cm
2
, fy= 2800 kgf/cm

2
, 

Pu= 200 ton and x= 25 cm, for which the minimum cost is NT$ 3272 and b=49 cm, h=54 cm, N1=2 

and N2=4. To explore the effects of the compressive strength of concrete on the optimal results, fc′ is 

varied and the other three given conditions are fixed. Some examples are shown in Table 2, which can 

be plotted in Fig. 2. The results show that the higher the compressive strength of concrete, the lower 

the minimum cost turns out. To explore the effects of the yield strength of steel on the optimal results, 

fy is varied and the other three given conditions are fixed. Some examples are shown in Table 3, which 
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can be plotted in Fig. 3. The results show that the yield strength of steel doesn’t have the tendency to 

increase or reduce the minimal cost. To explore the effects of the depth of the neutral axis on the 

optimal effects, x is varied and the other three conditions are fixed. Some examples are shown in 

Table 4, which can be plotted in Fig. 4. The results show that the larger the depth of neutral axis x, the 

smaller the eccentricity becomes and the lower the minimum cost turns out. From the 290 case 

designed in this paper, it is found that the number of tension reinforcement always approaches two, as 

shown in Tables 1-4, which is the lower bound set for longitudinal reinforcement when the genetic 

algorithms are executed.   

Table1. The 20 results for the case of fc′ = 280 kgf/cm2, fy= 2800 kgf/cm2, Pu = 200 ton and x = 25 cm.  

Cycle  fc′ 

(kgf/cm2) 

fy 

(kgf/cm2) 

Pu 

(ton) 

x 

(cm) 

e 

(cm) 

b 

(cm) 

h 

(cm) 

N1 N2 Cost 

(NT$) 

1 280 2800 200 25 22.2 47 57 2 4 3299 

2 280 2800 200 25 22.2 47 57 2 4 3299 

3 280 2800 200 25 22.2 47 57 2 4 3299 

4 280 2800 200 25 20.3 49 54 2 4 3272 

5 280 2800 200 25 22.2 47 57 2 4 3299 

6 280 2800 200 25 20.3 49 54 2 4 3272 

7 280 2800 200 25 20.3 49 54 2 4 3272 

8 280 2800 200 25 20.3 49 54 2 4 3272 

9 280 2800 200 25 20.3 49 54 2 4 3272 

10 280 2800 200 25 22.2 47 57 2 4 3299 

11 280 2800 200 25 21.5 48 56 2 4 3306 

12 280 2800 200 25 22.2 47 57 2 4 3299 

13 280 2800 200 25 20.3 49 54 2 4 3272 

14 280 2800 200 25 20.3 49 54 2 4 3272 

15 280 2800 200 25 22.2 47 57 2 4 3299 

16 280 2800 200 25 20.3 49 54 2 4 3272 

17 280 2800 200 25 20.3 49 54 2 4 3272 

18 280 2800 200 25 20.3 49 54 2 4 3272 

19 280 2800 200 25 22.8 47 58 2 4 3336 

20 280 2800 200 25 20.3 49 54 2 4 3272 

Table2. Some examples of fixing fy, Pu and x and varying fc′ . 

e. g.  fc′ 

(kgf/cm2) 

fy 

(kgf/cm2) 

Pu 

(ton) 

x 

(cm) 

e 

(cm) 

b 

(cm) 

h 

(cm) 

N1 N2 Cost 

(NT$) 

 

1 

 

210 4200 100 10 36.7 56 56 2 7 3992 

280 4200 100 10 36.7 53 54 2 5 3627 

350 4200 100 10 37.0 46 54 2 5 3502 

420 4200 100 10 37.5 41 54 2 5 3346 

 

2 

210 4200 150 15 28.3 49 54 2 6 3455 

280 4200 150 15 29.1 43 54 2 5 3199 

350 4200 150 15 30.3 41 54 2 4 3085 

420 4200 150 15 31.2 41 54 2 3 2979 

 

3 

210 4200 200 20 28.3 48 60 2 6 3625 

280 4200 200 20 28.3 42 59 2 5 3325 

350 4200 200 20 29.3 40 59 2 4 3214 

420 4200 200 20 27.1 42 55 2 3 3065 

 

4 

210 4200 250 25 28.5 53 67 2 7 4292 

280 4200 250 25 27.0 46 64 2 6 3879 

350 4200 250 25 22.8 52 56 2 4 3687 

420 4200 250 25 22.0 48 54 2 4 3501 

 

5 

210 4200 300 30 35.5 54 83 2 7 4963 

280 4200 300 30 23.5 57 64 2 6 4432 

350 4200 300 30 17.5 54 54 2 6 4058 

420 4200 300 30 18.6 53 54 2 4 3744 
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Table3. Some examples of fixing fc′, Pu and x and varying fy . 

e.g.  fc′ 

(kgf/cm2) 

fy 

(kgf/cm2) 

Pu 

(ton) 

x 

(cm) 

e 

(cm) 

b 

(cm) 

h 

(cm) 

N1 N2 Cost 

(NT$) 

 

1 

 

210 2800 100 10 30.7 54 54 2 6 3649 

210 3500 100 10 36.5 58 58 2 6 3972 

210 4200 100 10 36.7 56 56 2 7 3992 

 

2 

   

210 2800 150 15 25.7 51 54 2 6 3532 

210 3500 150 15 26.8 46 54 2 6 3338 

210 4200 150 15 28.3 49 54 2 6 3455 

 

3 

210 2800 200 20 24.9 58 58 2 6 3972 

210 3500 200 20 22.5 53 54 2 7 3794 

210 4200 200 20 28.3 48 60 2 6 3625 

 

4 

210 2800 250 25 25.0 63 64 2 7 4635 

210 3500 250 25 25.1 60 63 2 7 4454 

210 4200 250 25 28.5 53 67 2 7 4292 

 

5 

210 2800 300 30 25.4 67 70 2 8 5289 

210 3500 300 30 24.2 66 67 2 8 5098 

210 4200 300 30 35.5 54 83 2 7 4963 

Table4. Some examples of fixing fc′, fy and Pu and varying x.  

e. g.  fc′ 

(kgf/cm2) 

fy 

(kgf/cm2) 

Pu 

(ton) 

x 

(cm) 

e 

(cm) 

b 

(cm) 

h 

(cm) 

N1 N2 Cost 

(NT$) 

 

 

1 

210 4200 150 10 43.4 74 74 2 10 6216 

210 4200 150 15 28.3 49 54 2 6 3455 

210 4200 150 20 27.9 40 56 2 5 2979 

210 4200 150 25 24.1 40 55 2 5 2949 

210 4200 150 30 20.2 41 54 2 4 2775 

 

 

2 

350 2800 200 10 36.66 71 71 2 9 6429 

350 2800 200 15 24.93 49 54 2 6 3825 

350 2800 200 20 24.01 45 55 2 4 3310 

350 2800 200 25 21.07 44 55 2 3 3041 

350 2800 200 30 20.63 39 57 2 3 2912 

 

Figure2. The minimum cost with fy = 4200 kgf/cm2 fixed and fc′ varied 
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Figure3. The minimum cost with fc′ =210 kgf/cm2 fixed and fy varied 

 

Figure4. The minimum cost with x varied 

5. CONCLUSIONS 

Traditionally, columns are designed by trial-and-adjustment method, which is time-consuming.  The 

method used in this paper not only can design reinforced concrete non-slender columns efficiently but 

also obtain the columns with the minimum cost. From the numerical results, the principal conclusions 

may be summarized as follows:  

(1) Within the scope of giving conditions in this paper, the compressive strength of concrete has 

influence on the minimum cost: the higher the compressive strength of the concrete, the lower the 

minimum cost, while the yield strength of steel doesn’t have direct influence on the cost. 
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(2) In order to have the minimum cost, the number of tension reinforcement always approaches the 

lower limit that is set to be two. 

(3) The larger the depth of neutral axis x is, the smaller the eccentricity becomes and the lower the 

minimum cost turns out. 

(4) Once the factored axial load, neutral axis depth, compressive strength of concrete and yield 

strength of steel are given, the genetic algorithms can quickly and optimally design the reinforced 

concrete non-slender columns without going through the tedious column design procedure. 
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