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Abstract: Further analysis of the demonstration in Porras-Ferreira and Andrade (2014) that prime numbers 

always occupy one of eight columns in a 30-column array and infinite rows such that 

𝑃𝑛 =  1,7,11,13,17,19,23,29 + 30𝑛, for 𝑛 ≥ 0 (except for 1 which is not prime for 𝑛 = 0 and the primes 2, 3 

and 5, the only primes that occupy columns 2, 3 and 5) showed that composite numbers 𝑁𝑐  generated in the 

eight columns where prime numbers orderly locate,  follow a defined pattern originated in the same primes 

located in the different columns. This pattern has two characteristics; the first one establishes the row number 𝑛 

where a composite numbers will be located and the second characteristic gives the value of the prime factors of 

each composite number.  

The method above permits the prediction of the location for cells where composite numbers will occur and their 

prime factors in a simple way. In a simple illustration, prime number 7, being the smallest of the order equation 

of prime numbers (eight columns in a 30-column array), establishes a six-row sequence where primes can be 

located and one row where 7 will always be a prime factor to infinity accompanying with other prime factors 

that originate composite numbers. Each prime factor, different from 7, originates a similar sequence, but being 

greater, their sequence can intersect the sequence of 7 in some n, leaving always free rows in the eight columns 

where prime numbers will locate to infinity in the eight columns in a 30-column array.  

Dirichlet´s theorem establishes that there are infinite primes of the form 𝑎𝑛 + 𝑏, for  𝑛 = 1, 2,…, where 𝑎, 𝑏 are 

primitive integer numbers. This equation is the same of the order of prime numbers 

𝑝𝑛 =  1,7,11,13,17,19,23,29 + 30𝑛, where 𝑎 = 30, 𝑏 = [1,7,11,13,17,19,23,29] and 𝑛 is the same for both 

equations, therefore if the mathematical transformation of any conjecture to the form  

𝑃𝑛 =  1,7,11,13,17,19,23,29 + 30𝑛, for 𝑛 ≥ 0, is possible,  such form will contain infinite primes and the 

conjecture will be true according to Dirichlet’s theorem. According to that, the demonstration of the infinitude 

of Mersenne primes, Fermat primes and 4𝑥 + 1 primes are shown as well the demonstration that there are not 

odd perfect numbers. 

Keywords: Dirichlet’s Theorem, Mersenne Primes, Fermat primes, 4𝑥 + 1 primes, Perfect Numbers, Prime 

Numbers Formation. 

 

1. INTRODUCTION  

Many of the questions around prime numbers that remained open until recently have been solved by 

means of using the found order of prime numbers as expressed in Porras-Ferreira and Andrade (2014) 

[1]. Often having an elementary formulation, many of these conjectures have withstood a proof for 

decades: for all four of Landau's problems from 1912 [2] solutions were offered in [3].  Goldbach's 

conjecture:  “every even integer greater than 2 can be expressed as the sum of two primes” [4] has an 

explicit solution in [3] including the “weak” Goldback’s conjecture. The twin prime conjecture: “there 

are infinitely many pairs of primes whose difference is 2” [5] and that there are infinite prime 

numbers of the form 𝑎2 + 1” (e.g. Euler, 1760) [6] were solved using the found order as well as the 

1379 Conjecture Porras-Ferreira and Andrade-Amaya, (2015) [3]. Some other famous patterns of 

primes have also been conjectured with like the order the French monk Marin Mersenne devised of 

the form 2p − 1, with p a prime [7] from which today the Great Internet Mersenne Prime Search 

(GIMPS) is looking for another even larger prime [8][9], the conjecture whether there are infinite 

Fermat’s primes of the form 𝐹𝑦 = 22𝑦
+ 1 [10], and many other proposed patterns  that are not 

mentioned here for simplicity.   

In Porras-Ferreira and Andrade (2015) [1] it was established that prime numbers in a systematic form 

always occupy one of eight columns in a 30-column array and infinite rows such that 𝑃𝑛 =
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 1,7,11,13,17,19,23,29 + 30𝑛, for 𝑛 ≥ 0 (except for 1 which is not prime for 𝑛 = 0 and the primes 

2, 3 and 5, the only primes that occupy the columns 2, 3 and 5). Later, in Porras-Ferreira and 

Andrade-Amaya (2015) [3] this order array was tested and used for solving several conjectures related 

to the sequences for prime numbers. The natural inquietude was to follow the study of the behavior of 

the location for composite numbers in the eight columns where prime numbers are positioned in the 

30-column array and the application of Dirichlet’s theorem [11] in the eight columns in a 30-column 

array where the primes are formed, to solve other conjectures related to prime numbers as infinitude 

of Mersenne primes [12], Fermat primes [13] and primes 4𝑥 + 1 for 𝑥 ≥ 1 [14].  

In antiquity, several mathematicians thought that numbers of the form 2𝑝 − 1 were primes for all 𝑝 

primes [15]. Hudalricus Regius in 1536 [15], demonstrated that  211 − 1 was not a prime. Pietro 

Cataldi in 1603 [15], correctly verified that 217 − 1 and 219 − 1, were both primes, but also 

enunciated that for 𝑝 = [23, 29, 31, 37]. Fermat in 1640 [16] demonstrated that Cataldi were wrong 

for 𝑝 = [23, 27]. Later, Marin Mersenne, a French monk, in 1644 [17], correctly established that for 

𝑝 = [2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257] the resultant numbers were primes but mistakenly 

established that for the rest primes  𝑝 > 257 the resultant numbers were composite numbers.  

Pervouchine in 1873 [16], verified that for 𝑝 = 61  the resultant number were prime and Power in 

1900 [6] probed for 𝑝 = [89, 107]. Finally in 1947, a complete verification was done, resulting in the 

correct list 𝑝 = [2, 3, 5, 7, 13, 17, 19, 31, 61, 67, 89, 107, 257]. 

Because of his work, all prime numbers of the form 2𝑝 − 1, where  𝑝 is a prime number, receive the 

name of Mersenne primes (𝑀𝑝 ) [18], denoted as: 

𝑀𝑝 = 2𝑝 − 1 

Mersenne primes are related to the even perfect numbers. A perfect number is a positive integer that is 

equal to the sum of its proper positive divisors, that is, the sum of its positive divisors excluding the 

number itself (also known as its aliquot sum). Equivalently, a perfect number is a number that is half 

the sum of all of its positive divisors (including itself) i.e. 𝜎1 𝑛 = 2𝑛. 

This definition is ancient, appearing as early as Euclid's Elements (VII.22)1 where it is called “τέλειος 

ἀριθμός” (perfect, ideal, or complete number). Euclid also proved a formation rule (IX.36) whereby 

𝑝(𝑝 + 1)/2  is an even perfect number whenever 𝑝 is what is now called a Mersenne prime. Much 

later, Euler proved that all even perfect numbers are of this form. It is not known whether there are 

any odd perfect numbers [19], or if infinitely many even perfect numbers exist. 

Fermat conjectured in 1650 that every Fermat number is Fermat prime. The much more commonly 

encountered Fermat numbers are a special case [20],[21] and [22], given by the binomial number of 

the form 𝐹𝑦 = 22𝑦
+ 1  and Eisenstein in 1844 proposed as a problem the proof that there are an 

infinite number of Fermat primes (Ribenboim 1996, p. 88 [23]). At present, however, the only Fermat 

numbers 𝐹𝑦   for 𝑦 ≥ 5 for which primality or compositeness has been established are all composite. 

Fermat believed that all numbers of the above form are prime numbers; that is, that 𝐹𝑦  is prime for all 

integral values of 𝑦. This is indeed the case for 𝑦 = [0.1.2.3.4]. However, the Swiss 

mathematician Leonhard Euler (1707–83) showed that Fermat’s conjecture is false for 𝑦 = 5: 

225
= 232 + 1 = 4,294,967,297, which is divisible by 641. Using computers, mathematicians have 

not yet found any Fermat primes for y greater than 4. So far, Fermat's original hypothesis seems to 

have been wrong. The search continues for Fermat numbers 𝐹𝑦  that are prime for 𝑦 ≥ 4. 

2. THE PATTERN PRODUCED BY THE PRIME NUMBER 7 IN THE POSITION OF COMPOSITE 

NUMBERS IN THE PRIME NUMBERS ORDER ARRAY 

The prime number 7 establishes an initial pattern in the Prime Numbers Order Array, where 

composite numbers will locate themselves every seven rows in each of the eight columns where prime 

numbers are. The method to find the initial cell 𝑛1, where 7 as prime factor will appear and 

                                                            

1 Euclid's Elements (Ancient Greek: Στοιχεῖα Stoicheia) is a mathematical and geometric treatise consisting of 

13 books written by the ancient Greek mathematician Euclid in Alexandria c. 300 BC 
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furthermore, the form of calculating the n-row where composite numbers that have 7 as a prime factor 

was established in Porras-Ferreira and Andrade [1] in equations (1) and (2).  

Taken into account that equation (1), form prime numbers 𝑃𝑛   and composite numbers 𝑁𝑐 : 

 
𝑃𝑛 =  1,7,11,13,17,19,23,29 + 30𝑛 𝑓𝑜𝑟 𝑛 ≥ 0

𝑁𝑐 =  1,7,11,13,17,19,23,29 + 30𝑛 for 𝑛 ≥ 1
                                                                                        (1) 

There will be no prime numbers in cells: 

𝑛 =  

𝑛1 + 𝑝1𝑘
𝑛1 + 𝑝2𝑘
𝑛1 + ⋯𝑘
𝑛1 + 𝑝𝑛𝑘

  ⇒ 𝑘 ≥ 1                                                                                                                                   (2) 

Where 𝑛 are the rows where there are no primes, 𝑛1 is the first row of any of the eight columns where 

primes are located and where 𝑝𝑛  appears for the first time. That is to say that from cell 𝑛1, the 

multiplication table of prime numbers 𝑝1 ,𝑝2 ,…𝑝𝑛   that conform the composite number 𝑁𝑐  is created.    

The 𝑛 row from where no primes will be generated can be predicted by using the residue until 

reaching 0.  The example for following procedure for prime 𝑝 = 7 column 1 is: 

In row 1 column 1:  31 ÷ 7 ≡ 3 (𝑚𝑜𝑑 7). In row 2 column 1: 61 ÷ 7 ≡ 5 (𝑚𝑜𝑑 7). That is to say the 

increment factor is 5 − 3 = 2. The residue 5 become 0 in row 3 column 1 (5+2=7): 91 ÷ 7 ≡
0 (𝑚𝑜𝑑 7), in other words in row𝑛1 = 3 of column 1, there will be a multiple of 7 and in 𝑛 = 3 +
7𝑘 for 𝑘 ≥ 0 there will be no prime numbers in column 1 (only composite numbers where one of its 

prime factor is 7). Same procedure can be followed to establish in what row 𝑛1 and 𝑛 of the other 

seven columns composite numbers with 7 as one of its prime factors will be located. Table I shows 

cells 𝑛1 of equation (2) where 7 appears for the first time as prime factor of the composite numbers in 

each of the eight columns in Equation (1). The other primes that compose the composite number in 

row 𝑛1, will begin a different sequence of rows 𝑛 where there will be composite numbers. Table I also 

shows the values for cells n for two of the initial prime factors that compose the composite number 𝑁𝑐  

and the respective 𝑛 rows what are not primes for 𝑘 ≥ 0. 

Table I. Rows 𝑛1 𝑎𝑛𝑑 𝑛 of each column where composite numbers with 7 as prime factor will be located in the 

array according to equations  (1) and (2) and values of 𝑁𝑐  for  𝑘 ≥ 0. 

Rows 𝑛 
Column    

1 

Column  

7 

Column 

11 

Column 

13 

Column 

17 

Column 

19 

Column 

23 
Column 29 

n₁ 3 7 5 4 2 1 6 3 

𝑁𝑐  in n₁ for 7 7*13 7*31 7*23 7*19 7*11 7*7 7*29 7*17 

𝑛 = 𝑛1 + 7𝑘 for 𝑝1 = 7 3 + 7𝑘 7 + 7𝑘 5 + 7𝑘 4 + 7𝑘 2 + 7𝑘 1 + 7𝑘 6 + 7𝑘 3 + 7𝑘 

𝑛  for other primes (Eq. 2) 3 + 13𝑘 7 + 31𝑘 5 + 23𝑘 4 + 19𝑘 2 + 11𝑘 1 + 7𝑘 6 + 29𝑘 3 + 17𝑘 

In Figure 1 for the case of prime number 7 it is possible to see the repeating pattern in each column 

where prime numbers are formed. 

 

Fig1. Repeating pattern locations of composite numbers being one of them the number 7 (prime) 
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Table II shows the case for the composite numbers that have the prime 11 as one of its factors; similar 

to Table 1 for the prime 7 and so on it can be shown how the other primes that will be appearing for 

the first time as factor of 𝑁𝑐  will follow the same behavior. 

TableII. Rows 𝑛1 𝑎𝑛𝑑 𝑛 of each column where composite numbers with 11 as prime factor will be located in 

the array according to equations  (1) and (2) and values of 𝑁𝑐  for  𝑘 ≥ 0. 

Rows n 
Column    

1 

Column  

7 

Column 

11 

Column 

13 

Column 

17 

Column 

19 

Column 

23 

Column 

29 

n₁ 4 6 11 8 2 21 4 6 

𝑁𝑐  in 𝑛1 for 11 11*11 11*17 11*31 11*23 11*7 11*59 11*13 11*19 

𝑛 = 𝑛1 + 11𝑘 for 𝑝1 = 11 4 + 11𝑘 6 + 11𝑘 11 + 11𝑘 8 + 11𝑘 2 + 11𝑘 21 + 11𝑘 4 + 11𝑘 6 + 11𝑘 

𝑛  for other primes (Eq. 2) 4 + 11𝑘 6 + 17𝑘 11 + 31𝑘 8 + 23𝑘 2 + 7𝑘 21 + 59𝑘 4 + 13𝑘 6 + 19𝑘 

Taking into account that Equation (1) for composite numbers 𝑁𝑐  , can be expressed as:  

𝑁𝑐 = 𝑝𝑚 ([1,7,11,13,17,19,23,29] + 30𝑘) for 𝑘 ≥ 0                                                                          (3) 

Where 𝑝𝑚  corresponds to the value of the new prime numbers that would be appearing in 𝑛1 of 

equation (2) and that haven’t appeared before as a factor of 𝑁𝑐 . Table III gives some examples for 

column 1: the prime number 31 appeared for the first time in row 𝑛1 = 1 and will appear again in 

𝑛 = 𝑛1 + 31𝑘 = 1 + 31 = 32  for𝑘 = 1, as factor of the composite number 𝑁𝑐 = 𝑝𝑚  1 + 30𝑘 =
31 1 + 30 = 31 ∗ 31 for𝑘 = 1. The same way it is fullfilled for all values of 𝑛1 and 𝑝𝑚  that will be 

resulting from equations (2) and (3). 

TableIII. Examples for equations (2) and (3) for 𝑘 = [1,2,3]  

𝑘 𝑝𝑚  𝑛1 𝑛 𝑁𝑐  

1 
   

32 
 

31*31 

2 31 1 1+31k 63 31(1+30k) 31*61 

3 
   

94 
 

31*91 

1 
   

124 
 

61*61 

2 61 63 63+61k 185 61(31+30k) 61*91 

3 
   

246 
 

61*121 

1 
   

276 
 

91*91 

2 91 185 185+91k 367 91(61+30k) 91*121 

3 
   

458 
 

91*151 

In the same way, it is possible to calculate in what cell in the other columns will appear the prime 

number as a factor of composite numbers using the Residue System. For example the prime numbers 

𝑝1 in column 1 and 𝑝7 in column 7, will appear as a factor in the others columns according to table 

IV. 

TableIV. Examples for prime numbers 𝑝𝑛  in column 1, will appear as a factor in the others columns  

Concept Column 1 
Column 

7 
Column 11 Column 13 Column 17 Column 19 Column 23 Column 29 

Form 30n +1 30n +7 30n +11 30n+13 30n+17 30n+19 30n+23 30n+29 

Value 𝑝1 7𝑝1 11𝑝1 13𝑝1 17𝑝1 19𝑝1 23𝑝1 29𝑝1 

Cell n 7n 11n 13n 17n 19n 23n 29n 

Compisite 
 

210n+7 330n+11 390n+13 510n+17 570n+19 690n+23 87n+29 

Value 13𝑝7 𝑝7 23𝑝7 19𝑝7 11𝑝7 7𝑝7 29𝑝7 17𝑝7 

Cell n+3 n n+5 n+4 n+2 n+1 n+6 n+3 

Composite 30(n+3)+1 
 

30(n+5)+11 30(n+4)+13 30(n+2)+17 30(n+1)+19 30(n+6)+23 
30(n+3)+2

9 

3. PROOF OF THE EXISTENCE OF A UNIQUE PATTERN IN THE PRIME NUMBERS GIVEN BY 

EQUATION (1) 

The importance of equations (1) and (2), in the case for number 7, which is the smallest prime in the 

equation, establishes a repetitive pattern every seven rows, leaving six rows where prime numbers 

will be located in the eight columns and one row where definitively never prime numbers will be 

located in the 30-column array, as shown in Table 1. This pattern repeats to infinity. Prime numbers 



José William Porras-Ferreira & Carlos Alberto Andrade-Amaya

 

 
International Journal of Research Studies in Science, Engineering and Technology [IJRSSET]             163  

greater than 7 that would appear as factors of the composite number 𝑁𝑐  also originates repetitive 

patterns that will locate cells 𝑛1 and 𝑛 where composite numbers form as shown in Tables 1 and 2, 

complying equations (2) and (3). These patterns will have a greater separation between one cell to 

other cells 𝑛  where prime numbers will be located with respect to the pattern of the prime number 7 

because they are primes greater than 7. Eventually these patterns would be super imposed among 

them when they take the same value of cell 𝑛  in equation (2).  

The above confirms that there is only one pattern defined in equation (1) for all prime numbers, 

always existing cells where prime numbers will be located in each of the eight columns of the array to 

infinity and warranty that in one of them there will be prime numbers located. Table V shows some 

examples up to row 𝑛 = 59 where equations (1) (2) and (3) are verified, for prime numbers Equation 

(1), as for composite numbers Equations (2) and (3).  

TableV. The location and formation of prime and composite numbers in the 30-column array according to 

equations   (1), (2) and (3). 

Rows n Column 1 Column 7 Column 11 Column 13 Column 17 Column 19 Column 23 Column 29 

0 
 

7 11 13 17 19 23 29 

1 31 37 41 43 47 7*7 53 59 

2 61 67 71 73 7*11 79 83 89 

3 7*13 97 101 103 107 109 113 7*17 

4 11*11 127 131 7*19 137 139 11*13 149 

5 151 157 7*23 163 167 13*13 173 179 

6 181 11*17 191 193 197 199 7*29 11*19 

7 211 7*31 13*17 223 227 229 233 239 

8 241 13*19 251 11*23 257 7*37 263 269 

9 271 277 281 283 7*41 17*17 293 13*23 

10 7*43 307 311 313 317 
 

17*19 7*47 

11 331 337 11*31 7*49*7*7 347 349 353 359 

12 19*19 367 7*53 373 13*29 379 383 389 

13 17*23 397 401 13*31 11*37 409 7*59 419 

14 421 7*61 431 433 19*23 439 443 449 

15 11*41 457 461 463 467 7*67 11*43 479 

16 13*37 487 491 17*29 7*71 499 503 509 

17 7*73 11*47 521 523 17*31 23*23 13*41 7*7*11 

18 541 547 19*29 7*79 557 13*43 563 569 

19 571 577 7*83 11*53 587 19*31 593 599 

20 601 607 13*47 613 617 619 7*89 17*37 

21 631 7*7*13 641 643 647 11*59 653 659 

22 661 23*29 11*71 673 677 7*97 683 13*53 

23 691 17*41 701 19*37 7*101 709 23*31 719 

24 7*103 727 17*43 733 11*67 739 743 7*107 

25 751 757 761 7*109 13*59 769 773 19*41 

26 11*71 787 7*113 13*61 797 17*47 11*73 809 

27 811 19*43 821 823 827 829 7*119(7*17) 839 

28 29*29 7*11*11 23*37 853 857 859 863 11*79 

29 13*67 877 881 883 887 7*127 19*47 29*31 

30 17*53 907 911 11*83 7*131 919 13*71 929 

31 7*7*19 937 941 23*41 947 13*73 953 7*137 

32 31*31 967 971 7*139 977 11*89 983 23*43 

33 991 997 7*11*13 17*59 19*53 1009 1013 1019 

34 1021 13*79 1031 1033 17*61 1039 7*149 1049 

35 1051 7*151 1061 1063 11*97 1069 29*37 13*83 

36 23*47 1087 1091 1093 1097 7*157 1103 1109 

37 11*101 1117 19*59 1123 7*7*23 1129 11*103 17*67 

38 7*163 31*37 1151 1153 13*89 19*61 1163 7*167 

39 1171 11*107 1181 7*13*13 1187 29*81 1193 11*109 

40 1201 17*71 7*173 1213 1217 23*53 1223 1229 

41 1231 1237 17*73 11*113 29*43 1249 7*179 1259 

42 13*97 7*181 31*41 19*67 1277 1279 1283 1289 
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43 1291 1297 1301 1303 1307 7*11*17 13*101 1319 

44 1321 1327 11*11*11 31*43 7*191 13*103 17*79 17*71 

45 7*193 23*59 1361 29*47 1367 37*37 1373 7*197 

46 1381 19*73 13*107 7*11*19 11*127 1399 23*61 1409 

47 17*83 13*109 7*7*29 1423 1427 1429 1433 1439 

48 11*131 1447 1451 1453 31*47 1459 7*11*19 13*113 

49 1471 7*211 1481 1483 1487 1489 1493 1499 

50 19*79 11*137 1511 17*89 37*41 7*7*31 1523 11*139 

51 1531 29*53 23*67 1543 7*13*17 1549 1553 1559 

52 7*223 1567 1571 11*11*13 19*83 1579 1583 7*227 

53 37*43 1597 1601 7*239 1607 1609 1613 1619 

54 1621 1627 7*233 23*71 1637 11*149 31*51 17*97 

55 13*127 1657 11*151 1663 1667 1669 7*239 23*73 

56 41*41 7*241 19*89 1693 1697 1699 13*131 1709 

57 29*59 19*103 1721 1723 11*157 7*13*19 1733 37*47 

58 1741 1747 17*103 1753 7*251 1759 41*43 29*61 

59 7*253 1777 13*137 1783 1787 1789 11*163 7*257 

Table V has the following information: 

 Contains nine columns, the first is 𝑛 and the other are the eight columns of the Array where prime 

numbers are located and where composite numbers also appear.  

 Colors represent a different prime factor, for example Green represents the composite numbers that 

have the prime 7 as factor, Grey shows the prime 11 etc. 

 It can be observed how these composite numbers follow the behavior established in equation (3) as 

they form in Table 4. In some cases cell with one pattern coincide with another pattern for 

composite numbers. For example cell 31 of column 1 coincide with the pattern generated by the 

prime 7 as factor of the composite number that formed in row 3 and the prime number 19, factor of 

the composed number that formed in row 12.  

 Prime Numbers are located in the cells in White color. 

 Another important aspect is that each column where the factor 7 generates for the first time, the 

other factor of the composite number is precisely the prime number in the other columns, for 

example, for column 1: number 7 as a factor is accompanying by the 13, the first prime in column 

13: for column 7: number 7 is accompanying by the 31, which is the first prime in column 1; for 

column 11: number 7 is accompanying by number 23 which is the first prime in column 23 and so 

on, until column 29, where number 7 is accompanying by number 17, which is the first prime of 

column 17. Same accompanying complies for the rest of the prime numbers that appear for the first 

time, as composite number, following equations (2) and (3) as it was shown also for prime 11 in 

Table 2.   

4. RELATION OF THE PRIMES ORDER ARRAY AND DIRICHLET’S THEOREM 

Dirichlet’s theorem [11] demonstrated that: If a and b are primitive integer numbers among them, 

then, the arithmetic progression 𝑎𝑛 + 𝑏 for 𝑛 = 1, 2,…, contain infinite primes. 

Taking from Equation (1) 𝑎 = 30, 𝑏 =  1,7,11,13, 17,19,23,29 , 𝑛 = 1, 2,…, according to 

Dirichlet’s theorem, the infinity of prime numbers in each of the eight columns of the array is then 

confirmed. In that sense, any conjecture for prime numbers that can be expressed in the form of 

Equation (1), by the rule of Dirichlet’s theorem it must have infinite primes and it is true. In this 

sense, the solutions of conjectures about the infinity Mersenne primes 2𝑝 − 1, Fermat’s primes 

22𝑦
+ 1 for 𝑦 ≥ 0 and primes 4𝑥 + 1 for 𝑥 ≥ 1will be demonstrated. 

3.1. The implication of Dirichlet´s theorem and prime order array to proof there are infinity 

Mersenne Primes [24] 

Table VI ([24] and [25]); show the 48 Mersenne primes, found in the Great Internet Mersenne Prime 

Search Program (GIMPS), the last discovered in 2013. The Great Internet Mersenne Prime 

Search (GIMPS) is a collaborative project of volunteers2 who use freely available software to search 

                                                            
2 Volunteer computing is an arrangement in which people (volunteers) provide computing resources to projects, 

which use the resources to do distributed computing and/or storage. 
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for Mersenne prime numbers. GIMPS is said to be one of the first large scale distributed computing 

projects over the Internet for research purposes. 

TableVI. 48 Mersenne Primes found until 2013, [24] [25]  

No. 𝑝 Digits in 𝑝 𝑀𝑝  Digits in 𝑀𝑝  Discoverer By 

1 2 1 3 1 B C Unknown 

2 3 1 7 1 B C Unknown 

3 5 1 31 2 B C Unknown 

4 7 1 127 3 B C Unknown 

5 13 2 8191 4 1456 Unknown 

6 17 2 131071 6 1588 Cataldi 

7 19 2 524287 6 1588 Cataldi 

8 31 2 2147483647 10 1772 Euler 

9 61 2 2305843009213693951 19 1883 Pervushin 

10 89 2 618970019…449562111 27 1911 Powers 

11 107 3 162259276…010288127 33 1914 Powers 

12 127 3 170141183…884105727 39 1876 Lucas 

13 521 3 686479766…115057151 157 30/01/1952 Robinson 

14 609 3 531137992…031728127 183 30/01/1952 Robinson 

15 1.279 4 104079321…168729087 386 25/06/1952 Robinson 

16 2.203 4 147597991…697771007 664 07/10/1952 Robinson 

17 2.281 4 446087557…132836351 687 09/10/1952 Robinson 

18 3.217 4 259117086…909315071 969 08/09/1957 Riesel 

19 4.253 4 190797007…350484991 1.281 03/11/1961 Hurwitz 

20 4.423 4 285542542…608580607 1.332 03/11/1961 Hurwitz 

21 9.689 4 478220278…225754111 2.917 11/05/1963 Gillies 

22 9.941 4 346088282…789463551 2.993 16/05/1963 Gillies 

23 11.213 5 281411201…696392191 3.376 02/06/1963 Gillies 

24 19.937 5 431542479…968041471 6.002 04/03/1971 Tuckerman 

25 21.701 5 448679166…511882751 6.533 30/10/1978 Noll y Nickel 

26 23.209 5 402874115…779264511 6.987 09/02/1979 Noll 

27 44.497 5 854509824…011228671 13.395 08/04/1979 Nelson y Slowinski 

28 86.243 5 536927995…433438207 25.962 25/09/1982 Slowinski 

29 110.503 6 521928313…465515007 33.265 28/01/1988 Colquitt y Welsh 

30 132.049 6 512740276…730061311 39.751 20/09/1983 Slowinski 

31 216.091 6 746093103…815528447 65.050 06/09/1985 Slowinski 

32 756.839 6 174135906…544677887 227.832 19/02/1992 Slowinski y Gage 

33 859.433 6 129498125…500142591 258.716 10/01/1994 Slowinski y Gage 

34 1.257.787 7 412245773…089366527 378.632 03/09/1996 Slowinski y Gage 

35 1.398.269 7 814717564…451315711 420.921 13/11/1996 GIMPS / J. Armengaud 

36 2.976.221 7 623340076…729201151 895.932 24/08/1997 GIMPS / G. Spence 

37 3.021.377 7 127411683…024694271 909.526 27/01/1998 GIMPS / R. Clarkson 

38 6.972.593 7 437075744…924193791 2.098.960 01/06/1999 GIMPS / N. Hajratwala 

39 13.466.917 8 924947738…256259071 4.053.946 14/11/2001 GIMPS / M. Cameron 

40 20.996.011 8 125976895…855682047 6.320.430 17/11/2003 GIMPS / M. Shafer 

41 24.036.583 8 299410429…733969407 7.235.733 15/05/2004 GIMPS / J. Findley 

42 25.964.951 8 122164630…577077247 7.816.230 18/02/2005 GIMPS / M. Nowak 

43 30.402.457 8 315416475…652943871 9.152.052 15/12/2005 GIMPS / Curtis y Boone 

44 32.582.657 8 124575026…053967871 9.808.358 04/09/2006 GIMPS / Curtis y Boone 

45 37.156.667 8 202254406…308220927 11.185.272 06/09/2008 GIMPS / Hans-M. Elvenich 

46 42.643.801 8 169873516…562314751 12.837.064 12/04/2009 GIMPS / Odd M. Strindmo 

47 43.112.609 8 316470269…697152511 12.978.189 23/08/2008 GIMPS / Edson Smith 

48 57.885.161 8 581887266…724285951 17.425.170 25/01/2013 GIMPS / Curtis Cooper 

An analysis of Table VI shows that: 

1. All Mersenne primes end in 1 or 7. Porras-Ferreira and Andrade in [1] established the way on how 

prime numbers form through Equation (1). 

Then, it could be thought that Mersenne Primes, only would have the form  𝑀𝑛 = 30𝑛 +
[1, 11, 7, 17]. However, further detail discard the forms 30𝑛 +  11, 17 , letting only the forms  

30𝑛 + [1, 7] for Mersenne primes, because: 
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 Mersenne Primes cannot end in 11.  

Proof: 

2𝑝 − 1 = 30𝑛 + 11  

2𝑝 − 12 = 30𝑛  

3 divide−12, but it won’t divide  2𝑝  which is an even integer no multiple of 3. Therefore  𝑀𝑛 ≠
30𝑛 + 11. 

 They can´t end in 17 either. 

Proof: 

2𝑝 − 1 = 30𝑥 + 17  

2𝑝 − 18 = 30𝑥  

3 divide−18, but it doesn´t divide  2𝑝  which is an even integer no multiple of 3. Therefore  𝑀𝑛 ≠
30𝑛 + 17.  

 Mersenne Primes can finish in 1. 

Proof: 

2𝑝 − 1 = 30𝑥 + 1  

2 2𝑝−1 − 1 = 30𝑛  

2𝑝−1 − 1 = 15𝑛  

16
𝑝−1

4 − 1 = 15𝑛  

Making  𝑎 =
𝑝−1

4
, being 𝑎 integer and  𝑝 ≡ 1 (mod 4), would be: 

16𝑎 − 1 = 15𝑛 where 16𝑎 − 1 ≡ 0 (mod 15). (16 elevated to any power will always end in 6, that 

subtracting 1 would end in 5, likewise it is divisible by 3, being the sum of its digits multiples of 3. 

Examples, for 𝑎 = 1, then 16 − 1 = 15, for 𝑎 = 2 then  256 − 1 = 255 multiple of 3 and 5. 

For this case  𝑛 =
16𝑎−1

15
 and 𝑝 ≡ 1 (mod 4). 

 Mersenne primes can end in 7. 

 Proof: 

2𝑝 − 1 = 30𝑛 + 7  

8  2
𝑝−3

4 − 1 = 30𝑛  

4(2
𝑝−3

4 − 1) = 15𝑛 

Making  𝑎 =
𝑝−3

4
, being 𝑎 integer and 𝑝 ≡ 3 (mod 4) would be: 

4 16𝑎 − 1 = 15𝑛 where  16𝑎 − 1 ≡ 0 (mod 15). For this case  𝑛 =
4(16𝑎−1)

15
 and 𝑝 ≡ 3 (mod 4). 

2. Prime numbers  𝑝 can have the form: 

𝑝 = 30𝑛 + [1, 7, 11, 13, 17, 19, 23, 29] 

With the restrictions expressed in  1c. and 1d. therefore the forms of  𝑝 would be: 

𝑝 =  
30𝑛 +  1, 13, 17, 29  for 𝑛 even

30𝑛 +  7, 11, 19, 23  for 𝑛 odd
 ≡ 1 (mod 4) 

𝑝 =  
30𝑛 +  7, 11, 19, 23  for 𝑛 even

30𝑛 +  1,13,17,29  for 𝑛 odd
 ≡ 3 (𝑚𝑜𝑑 4) 
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3. Mersene primes are infinite, according to Dirichlet’s theorem [11] and the form of prime numbers  

given by Porras-Ferreira and Andrade (2014) [1], where: 

𝑀𝑛 = 2𝑝 − 1 = 30𝑛 + 1 for 𝑛 =
16𝑎−1

15
, 𝑎 =

𝑝−1

4
 and 𝑝 ≡ 1 (mod 4), or 

𝑀𝑛 = 2𝑝 − 1 = 30𝑛 + 7 for 𝑛 =
4(16𝑎−1)

15
, 𝑎 =

𝑝−3

4
 and 𝑝 ≡ 3 (mod 4) 

with exception of 3 and 7 that are Mersenne Primes also.  

3.2. The Implication of Dirichlet´s Theorem and Prime Order Array to Proof There are Infinite 

Primes 𝟒𝐱 + 𝟏 For 𝐱 ≥ 𝟏 

On the conjecture of the existence of infinite primes of the form 4𝑥 + 1 for 𝑥 ≥ 1 a demonstration is 

not known, as there is a way of demonstrating that there are infinite primes 4𝑥 − 1 for 𝑥 ≥ 1. [14]. 

Demonstration that there are infinite primes 4𝑥 + 1 for 𝑥 ≥ 1: 

From Equation (1) for 𝑛 ≥ 1: 

 1 + 30𝑛 ≡ 1 (𝑚𝑜𝑑 4) = 4𝑥 + 1 for even 𝑛, where 𝑥 = 30𝑛/4 

 7 + 30𝑛 ≡ 1 (𝑚𝑜𝑑 4) = 4𝑥 + 1 for odd 𝑛, where 𝑥 = (6 + 30𝑛)/4  

 11 + 30𝑛 ≡ 1 (𝑚𝑜𝑑 4) = 4𝑥 + 1 for odd 𝑛, where 𝑥 = (10 + 30𝑛)/4 

 13 + 30𝑛 ≡ 1 (𝑚𝑜𝑑 4) = 4𝑥 + 1 for even 𝑛, where 𝑥 = (12 + 30𝑛)/4 

 17 + 30𝑛 ≡ 1 (𝑚𝑜𝑑 4) = 4𝑥 + 1 for even 𝑛, where 𝑥 = (16 + 30𝑛)/4 

 19 + 30𝑛 ≡ 1 (𝑚𝑜𝑑 4) = 4𝑥 + 1 for odd 𝑛, where 𝑥 = (18 + 30𝑛)/4 

 23 + 30𝑛 ≡ 1  𝑚𝑜𝑑 4 = 4𝑥 + 1 for odd 𝑛, where 𝑥 = (28 + 30𝑛)/4 

 29 + 30𝑛 ≡ 1 (𝑚𝑜𝑑 4) = 4𝑥 + 1 for even 𝑛, where 𝑥 = (28 + 30𝑛)/4 

According to Dirichlet’s theorem [11] and the form of prime numbers  given by Porras-Ferreira and 

Andrade (2014) [1], there are infinite solutions of prime numbers ending in [1, 13, 17, 29] for even 𝑛 

and for  prime numbers ending in [7, 11, 19, 23] for odd 𝑛, therefore there are infinite primes 4𝑥 + 1 

for 𝑥 ≥ 1. 

Because it has been able to effect the transformation 4𝑥 + 1 to the general form of the prime numbers 

given by Equation (1), leads to the conclusion that there are infinite prime of the 4𝑥 + 1 form. Table 

VII shows some examples of primes for different values of odd and even 𝑛 (Equation (1)), calculating 

the respective 𝑥 value for 4𝑥 + 1 primes. The respective prime number meets the two forms 

simultaneously (Equation (1) and 4𝑥 + 1 forms): 

Table VII. Examples of primes 4𝑥 + 1 compared with primes of Equation (1), for values of odd and even 𝑛  

Form 𝑛 Primes 𝑥 Form 

 
71 2137 534 

 
7 + 30𝑛 101 3037 759 4𝑥 + 1 

 
361 10837 2709 

 

 
71 2141 535 

 
11 + 30𝑛 101 3041 760 4𝑥 + 1 

 
107 3221 805 

 

 
3 109 27 

 
19 + 30𝑛 101 3049 762 4𝑥 + 1 

 
105 3169 792 

 

 
71 2153 538 

 
23 + 30𝑛 113 3413 853 4𝑥 + 1 

 
361 10853 2713 

 

 
40 1201 300 

 
1 + 30𝑛 112 3361 840 4𝑥 + 1 

 
148 4441 1110 

 

 
40 1213 303 

 
13 + 30𝑛 112 3373 843 4𝑥 + 1 
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386 11593 2898 

 

 
40 1217 304 

 
17 + 30𝑛 120 3617 904 4𝑥 + 1 

 
386 11597 2899 

 

 
40 1229 307 

 
29 + 30𝑛 130 3929 982 4𝑥 + 1 

 
228 6869 1717 

 

Q.E.D. 

Also let 𝑝 be an odd prime. Then 𝑥2 ≡ −1 𝑚𝑜𝑑 𝑝  has a solution (i.e. −1 is a quadratic residue of 𝑝) 

iff 𝑝 ≡ 1 𝑚𝑜𝑑 4. In [3] was demonstrated infinite primes exist that form 𝑝 = 𝑥2 + 1, then infinite 

primes exist that form 4𝑥 + 1. By another form, suppose there are finitely many 𝑝1 ,𝑝2 ,… ,𝑝𝑘 . If 

𝑁 = (2𝑝1𝑝2 …𝑝𝑘)2 + 1 where 𝑁 > 1 and odd, therefore exist and odd prime 𝑝|𝑁, where 𝑝 = 𝑝𝑚  for 

some 1 ≤ 𝑚 ≤ 𝑘, but  2𝑝1𝑝2 …𝑝𝑘 
2 ≡ −1 𝑚𝑜𝑑 𝑝 where 𝑝 ≡ 1 𝑚𝑜𝑑 4 then 𝑝|(2𝑝1𝑝2 …𝑝𝑘)2 and 

𝑝|1 is false. So there exist infinite 𝑝 where 𝑝 > 𝑝𝑘  and it is possible to continue in the same way as 

𝑝𝑘 → ∞. This procedure is similar to the demonstration that exist infinite primes made by Euclid and 

special cases of a remarkable theorem due to Dirichlet [11] and prime order array [1]. 

The other way to prove this is by reduction ad absurdum, i.e. assuming that there is a prime 𝑝 

congruent 1 𝑚𝑜𝑑 4, which is the largest. As a result, if 𝑝1 ,… ,𝑝𝑛  are primes congruent 1 𝑚𝑜𝑑 4, then 

𝑝𝑖 ≤ 𝑝 for all 𝑖 = 1,… ,𝑛. On the other hand, 𝑝 = 1 + 4𝑥 for some 𝑥 ∈ ℕ. Then, taking into account 

the fundamental theorem of arithmetic, 𝑥 can be represented as  

𝑥 = 𝑝1
𝑘1 × 𝑝2

𝑘2 × …× 𝑝𝑟
𝑘2  

Where 𝑘1 , 𝑘2 ,… , 𝑘𝑟 , are non-negative integers, 𝑟 ≤ 𝑛. 

Defining a number q as well: 

𝑞 = 1 + 4𝑥𝑝 

= 1 + 4𝑝1
𝑘1 × 𝑝2

𝑘2 × …× 𝑝𝑟
𝑘2 × 𝑝 

Here, it is obvious that, 𝑞 is not divisible by any prime, since it would always result residue 1, then 𝑞 

is divisible only by 1 and by itself, i.e., 𝑞 is prime, which turns out to be contradictory since we had 

assumed that 𝑝 was the largest prime, and we have found that 𝑞 is prime, 𝑞 > 𝑝 and 𝑞 ≡ 1 𝑚𝑜𝑑 4, so 

there are infinite primes 1 + 4𝑥. 

3.3. The Implication of Dirichlet´S Theorem and Prime Order Array to Proof there are Infinite 

Fermat Primes 𝐅𝐲 = 𝟐𝟐𝐲 + 𝟏 For 𝐲 ≥ 𝟏 

For this conjecture on whether there are infinite Fermat primes 𝐹𝑦 = 22𝑦
+ 1, the solution is derived 

from the previous demonstration, since the factor 22𝑦
 can be transform to 4𝑥: 

22𝑦
= 4𝑧 , where 𝑧 = 2𝑦−1, 4𝑥 = 4𝑧  and 𝑥 = 4𝑧−1.  

Given that 𝑧 is always even, 4𝑧  will always end in 6, therefore Fermat primes form is: 30𝑛 + 17. As 

there are infinite prime solutions 30𝑛 + 17 ≡ 1 (𝑚𝑜𝑑𝑢𝑙𝑜 4) = 4𝑥 + 1, for even 𝑛, therefore must 

exist infinite solutions of prime 4𝑧 + 1 ≡ 22𝑦
+ 1 ≡ 4𝑥 + 1 ≡ 30𝑛 + 17 for 𝑥 = 4𝑧−1 = 42𝑦−1−1 ,

𝑧 = 2𝑦−1 and 𝑛 =
4𝑧−16

30
=

42𝑦−1
−16

30
, for 𝑦 ≥ 2. Note for 𝑦 = [0, 1], Fermat primes are 3 and 5 and 

they are the only different primes from form 30𝑛 + 17 

Table VIII gives examples of Fermat primes, where the form 22𝑦
+ 1, 4𝑥 + 1 and 30𝑛 + 17 are met. 

Table VIII. Examples of Fermat primes 𝐹𝑦 = 22𝑦
+ 1 

𝑦 𝑧 4𝑧  𝑛 𝑥 4𝑧 + 1 ≡ 22𝑦
+ 1 ≡ 4𝑥 + 1 ≡ 30𝑛 + 1 

2 2 16 0 4 17 

3 4 256 8 64 257 

4 8 65536 2184 16384 65567 
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To date the largest Fermat prime number known is 65537. Verifications for 

𝑧 = [16, 32, 64, 128, 256, 512, 1024] have been made and the resulting numbers are composites, 

however as primes of form 30𝑛 + 17  are infinite there is no reason for values of 𝑛 =
4𝑧−16

30
 with 

higher values of 𝑧 > 1024, can be Fermat primes where 𝑛 is an exponential progression and in 

Equation (2),  𝑛 is an arithmetic progression.   

Q.E.D. 

Whether there is heuristic argument that suggests there is only a finite number of them. This argument 

is to due to Hardy and Wright [26]. 

Recall that the Prime Number Theorem says 𝛱(𝑥)~
𝑥

log 𝑥
, where 𝛱(𝑥) is the number of primes ≤ 𝑥. 

Hence 𝛱 𝑥 <
𝐴𝑥

log 𝑥
 for some constant 𝐴, and the probability that 𝑥 is a prime is at most 

𝐴

log 𝑥
. For 

22𝑦
+ 1, the probability that it is a prime is ≤

𝐴

log  22𝑦 +1 
≤

𝐴

log 22𝑦
=

𝐴

2𝑦 log 𝑥
≤

𝐴

2𝑦 . Hence, the expected 

number of primes in this form is ≤  
𝐴

2𝑦 = 2𝐴∞
0  which is a finite number.  

However, it is necessary to be careful that there arguments do not prove that there are really only 

finitely many Fermat primes. After all, they are only heuristic, as it can be seen in a similar 

arguments: 

1. Use the same reasoning to argue that there are infinitely many twin primes. Recall the Prime 

Number Theorem can be stated using limit: lim𝑥→∞
𝛱 𝑥 

𝑥

log 𝑥

= 1. Hence give 𝜀 > 0, there exists a 

number 𝑋 such that 1 − 𝜀 <
𝛱 𝑥 

𝑥

log 𝑥

 for all 𝑥 > 𝑋 

Thus, the probability that 𝑥 and 𝑥 + 2 are both primes is 
𝛱(𝑥)

𝑥
·
𝛱(𝑥+2)

𝑥+2
>

1

log 𝑥
·

1

log (𝑥+2)
(1 − 𝜀)2 for 

𝑥 > 𝑋. So the expected number of twin primes is >  
1

𝑥
(1 − 𝜀)2 +  

1

𝑥
(1 − 𝜀)2∞

𝑚
𝑚
0  which diverges.  

There are infinitely many primes in the form of 2𝑥 + 1.  

Using the exact same argument, the expected number of primes in this form is >  
1

𝑥
(1 − 𝜀)2 +𝑚

0

𝑚∞1𝑥(1−𝜀)2 which diverges.  

But 2𝑥 + 1 primes and 22𝑦
+ 1 primes are the same set. This latter argument suggests Hardy and 

Wright’s argument does not take into account of the properties of Fermat primes. It is to say that the 

variable 𝑥 is not that random. It works largely because gaps between successive Fermat numbers are 

extremely large. Nevertheless, given any number (even a number of a particular form), it is more 

likely to be a composite than prime. Therefore, bounding the probability of it being a prime by a 

lower bound gives a weaker argument that bounding it from above then there are infinitely many 

Fermat prime as it was demonstrated. 

3.4. Analysis on Perfect Numbers 

A positive integer 𝑛 is called a perfect number if it is equal to the sum of all its positive integers 

divisors excluding 𝑛 [27]. Mersenne primes are connected with perfect numbers thru the equation  

2𝑝−1 2𝑝 − 1 = 2𝑝−1𝑀𝑝 = 𝑛                                                                                                              (4) 

This demonstration was made by Euclid 2500 years ago showing that  2𝑝 − 1 should be a Mersenne 

Prime. In the XVIII century Euler probe the convers meaning that every perfect number has to have 

the form of Equation (4). That demonstration is in [14], [28] and [29]. 

The reason why perfect numbers comply with the above for 𝑀𝑛  and the other primes don´t can be 

demonstrated as follows: 

Proof: 

 Let 𝑛 be a perfect number and  𝑀𝑝  a prime number 𝑀 different from a Mersenne prime. 

 Equation (4) would be: 2𝑝−1𝑀 = 𝑛 
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 The sum of the factors of  2𝑝−1  is 2𝑝−1 − 1, (for example the sum of the factors of 25−1 = 16 is 

2 + 4 + 8 + 1 = 15 = 25−1 − 1. 

  The sum of all divisors of 𝑛 for 𝑝 is (2𝑝−1 − 1) and the sum of its factors by 𝑀 would be 

 2𝑝−1 − 1 𝑀.  

 Therefore the sum of all divisors of 𝑛 would be:  2𝑝−1 − 1 𝑀 +  2𝑝−1 − 1 + 2𝑝−1 = 2𝑝−1𝑀 −
𝑀 + 2 2𝑝−1 − 1 = 𝑛 = 2𝑝−1𝑀 

 𝑀 = 2 2𝑝−1 − 1 = 2𝑝 − 1 …………………………………………...……...according to 4. 

 𝑀 = 𝑀𝑝  Therefore what was assumed in 1 is false …………….…….…..according to 6. 

Q.E.D. 

The above demonstration left all even numbers 𝑛 in equation (4) as perfect and as it was said, Euler 

proves that all even perfect numbers have that form.  

The second question analyzed is to prove that odd perfect numbers cannot exist. For example Roberts, 

T. 2008 [30] has done studies on the form of an odd perfect number; Goto, T; Ohno, Y. 2008 [31] 

established that odd perfect numbers have a prime factor exceeding 108 and Ochem, Pascal and Rao, 

Michaël., 2012 [32] established that odd perfect numbers are greater than 101500 , but it is not 

necessary to go there according to the following demonstration: 

Proof: 

 Let 𝑛 = 𝑛𝑝  an odd perfect number. 

 The fundamental theorem of integer numbers say that all integer number can be decomposed in its 

prime factors. As 𝑛 is odd its prime factors are odd, 𝑛 = 𝑝1𝑝2𝑝3 …  𝑝𝑚  where 𝑝𝑚  is the 𝑚 − 𝑒𝑠𝑖𝑚  

odd prime factor that compose 𝑛. 

 Initially assuming that 𝑚 = 2, meaning there are 2 prime factors where 𝑝2 ≥ 𝑝1 and 𝑛 = 𝑝1𝑝2 

 By definition of a perfect number, for 𝑛 = 𝑛𝑝2
 be a perfect number (𝑛𝑝2

 is a perfect number with 

two prime factors), must be equal to the sum of all its integer positive divisors excluding  𝑛, 

therefore: 

𝑛𝑝2
= 1 + 𝑝1 + 𝑝2 

 According to 1, 3 and 4 

𝑛 = 𝑝1𝑝2 = 𝑛𝑝2
= 1 + 𝑝1 + 𝑝2 

but,  

𝑛 = 𝑝1𝑝2 = (𝑝1 − 1)𝑝2 + 𝑝2 = 𝑛𝑝2
= 1 + 𝑝1 + 𝑝2 

therefore: 

 𝑝1 − 1 𝑝2 = 1 + 𝑝1 

Being 𝑝1 ≥ 3 and 𝑝2 ≥ 𝑝1 ≥ 3, then  𝑝1 − 1 𝑝2 ≠ 1 + 𝑝1 and 𝑛 = (𝑝1 − 1)𝑝2 + 𝑝2 ≠ 𝑛𝑝2
= 1 +

𝑝1 + 𝑝2, therefore, there are not odd perfect numbers with two odd prime factors.  

 Assuming that  𝑚 > 2 where 𝑝1 ≤ 𝑝2 ≤ 𝑝3 ≤ ⋯  𝑝𝑚  and 𝑛 = 𝑝1𝑝2𝑝3 …𝑝𝑚  that can be reduced to: 

𝑛/𝑝𝑎 = 𝑝1𝑝2  where  𝑝𝑎 = 𝑝3 …  𝑝𝑚   

 According to 5. 
𝑛

𝑝𝑎
≠ 𝑛𝑝2

, therefore 𝑛 ≠ 𝑛𝑝2
𝑝𝑎 = 𝑛𝑝𝑚 = 1 + 𝑝1 + 𝑝2+𝑝3 + …  𝑝𝑚 +

𝑝2𝑝3… 𝑝𝑚+𝑝1𝑝3… 𝑝𝑚+𝑝1𝑝2… 𝑝𝑚+…+𝑝1𝑝2𝑝3… 𝑝𝑚−1. In conclusion, there cannot be an 

odd number equal to a perfect number. 

Q.E.D. 

The complete exercise for 𝑚 = 3 is as follow, 
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𝑛 = 𝑝1𝑝2𝑝3 

𝑛𝑝3
= 1 + 𝑝1 + 𝑝2𝑝3 + 𝑝2 + 𝑝1𝑝3 + 𝑝3 + 𝑝1𝑝2 

                            𝑛 = 𝑝2𝑝3 +  𝑝1 − 1 𝑝2𝑝3 = 𝑝2𝑝3 +  𝑝1 − 1 𝑝3 +  𝑝1 − 1  𝑝2 − 1 𝑝3

= 𝑝2𝑝3 +  𝑝1 − 1 𝑝3 +  𝑝1 − 1  𝑝2 − 1 +  𝑝1 − 1  𝑝2 − 1  𝑝3 − 1 
= 1 − 𝑝1 − 𝑝2 − 𝑝3 + 𝑝1𝑝2 + 𝑝1𝑝3 + 𝑝2𝑝3 + (𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) 

𝑛 = 𝑛𝑝3
 

 𝑝1 − 1  𝑝2 − 1  𝑝3 − 1 = 2𝑝1 + 2𝑝2 + 2𝑝3 

but:  

 𝑝1 − 1  𝑝2 − 1  𝑝3 − 1 ≠ 2(𝑝1 + 𝑝2 + 𝑝3)                                                                                    (5) 

therefore: 

𝑛 ≠ 𝑛𝑝3
 

Note: In Equation (5) it is easy to prove that when 𝑝1,2 = 3 and 𝑝3 ≤ 7 then: 

 𝑝1 − 1  𝑝2 − 1  𝑝3 − 1 < 2(𝑝1 + 𝑝2 + 𝑝3) and when  𝑝1 ≥ 3 and 𝑝2,3 ≥ 5 then: 

 𝑝1 − 1  𝑝2 − 1  𝑝3 − 1 > 2(𝑝1 + 𝑝2 + 𝑝3) 

The effect of multiplication in the left side is greater than the effect of sum in the right side of 

Equation (5). 

5. CONCLUSION 

Prime numbers are infinite along each one of the eight columns where they are located in the 30-

column array. This means that composite numbers that may form in Equation (1) never will fill all 

cells of each of those columns, complying the patterns given by Equations (2) and (3) to infinity. It 

can happen, for example in some cells within the repetitive pattern of the factor 7, all cells can be 

filled for all composite numbers, but there will be others going to infinity where this won’t happen. 

Therefore there will always be prime numbers occupying the cells where there are no composite 

numbers as 𝑛 → ∞. Because of the above, the pattern of order of the prime numbers given by 

Equation (1) is confirmed.  

Applying Dirichlet’s theorem the infinity of the prime numbers along each of the columns in Equation 

(1) is confirmed, so that if any conjecture on prime numbers obey to a pattern that can be algebraically 

transformed to the form of Equation (1), there will be warranty of the certainty of such conjecture, 

since there is no limit where the conjecture and the equivalent 𝑝 values are the same as  𝑛 row →∞. 

  It was demonstrated that Mersenne primes only end in 1 and 7 therefore they are of the form  

30𝑛 + [1, 7] for 𝑛 ≥ 1, with exception of 3 and 7 that are Mersenne primes. Using Dirichlet theorem 

and what was established in Porras-Ferreira and Andrade [1], it was demonstrated that Mersenne 

primes are infinite. Also it was demonstrated that primes 4𝑥 + 1 and Fermat primes are infinite as 

special cases of a remarkable theorem due to Dirichlet [11] and prime order array [1]. 

Likewise, Mersenne primes are part of all even perfect numbers, as was demonstrated by Euclid and 

Euler, it was demonstrated that primes different of Mersenne primes can’t be part of even perfect 

numbers. Finally it was demonstrated that odd perfect numbers cannot exist. 
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