
International Journal of Research Studies in Science, Engineering and Technology

Volume 2, Issue 12, December 2015, PP 15-21

ISSN 2349-4751 (Print) & ISSN 2349-476X (Online)

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 15

Implementation of Area Efficient IEEE-754 Double Precision

Floating Point Arithmetic Unit Using Verilog

Bhaskar Chittaluri

M. Tech, ECE department, Malla Reddy Engineering College (Autonomous), Hyderabad, India.

bhaskar.chittaluri@gmail.com

Abstract: This methodology considered for the many applications related to the different criterions of basic

characteristic requirements. This can be carried via 64- bits, which employs the IEEE 754-2008 standard format

for floating point unit design. In our proposed method we apply the novel constructs related to the different

considerations of the VLSI. Unlike the traditional methods we adopted betterment multiplication algorithm and

the addition of the partial product. For accomplishment of floating point operational unit the standard IEEE

format can be acquired. The proposed concept provides the additional solution that able to perform the many

operations such as addition, subtraction multiplication and division with accurate response and effectiveness.

From out of the previous methods this proposal may affords the less footprint with more accuracy.

Keywords: Double Precision, Floating Point number, Normalization, Overflow, Underflow, etc.

1. INTRODUCTION

At this level no other promising approaches for the real number operations. By this only IEEE 754-

2008 can be used in this format include the two edicts. They are single precision and double precision

and the uses the two lengths of bits, 32 and 64 respectively.

Figure1. IEEE single precision floating point format

S = Sign , E = Exponent, M = Mantissa

X= (-1) ^s*2^ (E-bias)*(1.F)

As from the previous methods that uses the IEEE 754-2008 binary interchange format with the 32

format. In this the multiplication of the significant can be carried out by the 24 bits that results the 48

bit output. Which will able to gives the high end output when they use the whole bits for the

operation. For the improvement thesis utilizes the rounding of the numbers can also be considered.

When we concentrated on the high accuracy the area and the operational power also increases.

Moreover, when we use the larger bit count (precision) i.e. for the longer real numbers, this method

cannot provide that much good result with this concept.

Many advanced methods are increasing by the progress of requirements of the user. By this aspect

user cannot able to accept the huge truncation error with reference of the factorization.

Sign Exponent Mantissa

63 62………..52 51…………………………..0

Figure2. IEEE double precision floating point format

Implementation of Area Efficient IEEE-754 Double Precision Floating Point Arithmetic Unit Using

Verilog

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 16

From the above format „63‟ bit concerns for the sign of the number if this is high the number

considered as the negative, if zero, the number is treated as positive. Consecutive „11‟upper bits from

62 bit considered as the exponent and remaining all bits can be considered as the mantissa i.e. 52 bits

from 51 to 0.

The literal value of the double precision floating point number is as follows:

Value = -1^ (sign bit) * 2^ (exponent – 1023) * 1. (Mantissa)

(1.mantissa) being a base 2 representation of a number between 1 and 2, with 1 followed by a decimal

point and the 52 bits of the mantissa. There by the large values can be able to represent. This will

increase the accuracy. That causes the reduction of the truncation error.

This paper organizes as follows section I deals with basic introduction about the floating formats and

previous methods, section II describes the proposed floating point unit, section III provides the results

and discussion and followed by the conclusion and references.

2. FLOATING POINT UNIT

Figure3. Floating point unit

In our proposed floating point architecture consists of the four sub units namely addition, subtraction,

multiplication and division. For these units receive the double precision formatted outputs and

performs the operation produces the outputs, those outputs are selected by the selection multiplexer,

that multiplexer will controlled by using the „sel‟ signal given by the user.

2.1. Addition

From the addition algorithm inputs are taken, large exponents can be determined from two they are

namely exponent large (EL) and exponent small (ES). EL and ES subtracted and that many respected

shifts performed with Mantissa small, and then shifted mantissa and, mantissa large will be added to

find the mantissa output. Exponent large will be the exponent output.

S Exp large (EL) TM

Figure4. Addition algorithm

Bhaskar Chittaluri

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 17

2.2. Subtraction

Figure5. Subtraction algorithm

Subtraction algorithm is similar to that of the addition, the only difference is that rather than

performing shifted mantissa and mantissa large addition here we perform subtraction, remaining will

be the same.

2.3. Multiplication

For performing the floating point multiplication there are some basic steps to be followed those steps

are:

1. Multiplying the significand; i.e. (1.M1 * 1.M2)

2. Placing the decimal point in the result

3. Adding the exponents; i.e. (E1+E2– Bias)

4. Obtaining the sign; i.e. S1^S2

5. Normalizing the result; i.e. obtaining 1 at the MSB of the results significant

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

Unlike the previous, for significant multiplication we use the radix-4 unsigned booth algorithm

because, in general we don‟t deals with the negative number multiplication method because in our

multiplication, MSB is not concern with the sign of that particular numbers. There by we can reduce

the area and bit count that related to the signed multiplication.

The multiplication is segmented as the partial product generation and tree addition and the final

addition, here as discussed above, the radix-4 unsigned algorithm used for the partial product

generation and compressor can be used for the tree addition and the Normal adder can be used for the

final addition.

In this the booth recoding can be of three bits each starts for either LSB to MSB or MSB to LSB by

the over lapping each group numbers that are multiplied. By this we can reduce the number of partial

products by half, by radix-Booth recoding technique can be considered as the partial product

generation.

Implementation of Area Efficient IEEE-754 Double Precision Floating Point Arithmetic Unit Using

Verilog

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 18

Figure6. Grouping of bits from the multiplier term

Table1. Redundant value for group pairing

Each block is decoded to generate the correct partial product. The encoding of the multiplier Y, using

the modified booth algorithm, generates the following five signed digits, -2, -1, 0, +1, +2. Each

encoded digit in the multiplier performs a certain operation on the multiplicand, X, as illustrated in

Table 1

Figure7. Radix-4 partial product selector logic

Exponent addition can be carried out by the adder but this resultant added output consists of the two

bias numbers so the subtractor circuit can be used to subtract the one bias from the resultant exponent

add out.

Sign determination can be carried out by the XOR gate.

The normalization operation can be performed to prevent „1‟ at most significant position. Condition

for the normalization can be shown below

Table2. Normalization conditions

104 103 Normalization

0 0 No

0 1 No

1 0 Yes

1 1 No

Bhaskar Chittaluri

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 19

As part of normalization if normalization condition occurs then the mantissa will shift one position

right and exponent will be incremented by one. Before going to the normalization itself the

overflow/under flow can be determined for the used identification purpose. Below Figure shows the

table of under flow/overflow.

Table3. Overflow/under flow

Eout Condition Value

Eout < 0 Under flow 00

Eout =0 Zero 01

Eout<1023 Normalized number 10

Eout>1024 Over flow 11

2.4. Division

Division operation is similar to that of the multiplication. The divide is executed long hand style, with

one bit of the quotient calculated each clock cycle based on a comparison between the dividend

register and the divisor register.

If the dividend is greater than the divisor, the quotient bit is „1‟, and then the divisor is subtracted

from the dividend, this difference is shifted one bit to the left, and it becomes the dividend for the next

clock cycle.

If the dividend is less than the divisor, the dividend is shifted one bit to the left, and then this shifted

value becomes the dividend for the next clock cycle.

The exponent can be calculated from the subtracting the dividend exponent can be subtracted from the

divisor and bias will be added to it to produce the exponent out.

3. RESULTS AND DISCUSSION

Figure8. Simulation of proposed ALU unit

The double precision floating point arithmetic unit design was simulated in Modelsim 6.6d and

synthesized using Xilinx ISE 14.3. The simulation results of 64-bit double precision floating point

arithmetic unit are shown in above figure8.

Addition:

The exponent value for A (93) is 1029. For B (.07), the exponent is 1019. The differences between

the Exponents are 10. So the mantissa of B will be shifted to the right by 10 bits, and then added to

the mantissa of A.

Also, because both numbers are normalized, it means their exponents are greater than 0, the leading

„1‟ needs to be included in the addition.

Implementation of Area Efficient IEEE-754 Double Precision Floating Point Arithmetic Unit Using

Verilog

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 20

For addition operation, suppose we are adding 93 and .07.

Operand A (93) is represented in the double precision floating point format as:

Operand B (.07) is represented as:

Subtraction:

Subtraction is similar to addition except addition of mantissa here we perform subtraction.

Multiplication:

The exponent value for A (93) is 1029. For B (.07), the exponent is 1019, and then exponent are

added. The leading „1‟ needs to be included in the multiplication of mantissas, Also the result is

normalized.

Division:

The exponent value for A (93) is 1029. For B (.07), the exponent is 1019, and then exponent are

subtracted. The leading „1‟ needs to be included in the dividing of mantissas.

All operations will be performed every time we give input, but based on the „sel‟ input only one

assigned to output.

Table4. Device Utilization Summary of Double Precision Floating Point Arithmetic Unit

 Logic Utilization Used

Number of Slice Registers 104

Number of Slice LUTs 13313

Number of fully used LUT-FF pairs 104

Number of bonded IOBs 194

Table5. Area of Double Precision Floating Point Multiplier, Double Precision Floating Point Multiplier[14]

Device

parameters

Present work Addanki Purna Ramesh,A.V.N Tilak And

Dr.A.Mallikarjuna Prasad[14]

Double precision Double precision

No .of slices 4425 5648

Table4 shows the device utilization of double precision floating point arithmetic unit and it occupies

an area of 13313 slices.Table5 shows the area of double precision floating point multiplier. Addanki

Purna Ramesh,A.V.N Tilak And Dr.A.Mallikarjuna Prasad[14] implemented double precision floating

point multiplier and it occupies an area of 5648 Slices. So the implemented design provides less area

with more accuracy.

Bhaskar Chittaluri

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 21

4. CONCLUSION

Efficient floating point unit can be designed using Verilog HDL and simulated with Modelsim6.6d

and synthesized using the XILINX ISE 14.3. In our proposed design we achieve the less partial

product concern to the traditional multiplication algorithm and we also concentrated on the advanced

method for the partial product addition many cases some improvement towards the speed and also the

pipelined operation also can be achieved by using our design. By this we concluded that this is well

suited for the high speed application and also less die requirements.

REFERENCES

[1] Rudolf Usselmann, “Open Floating Point Unit, The Free IP Cores Projects”.

[2] Edvin Catovic, Revised by: Jan Andersson, “GRFPU – High Performance IEEE754 Floating

Point Unit”, Gaisler Research, Första Långatan 19, SE413 27Göteborg, and Sweden.

[3] David Goldberg, “What Every Computer Scientist Should Know About Floating-Point

Arithmetic”, ACM Computing Surveys, Vol 23, No 1, March1991, Xerox Palo Alto Research

Center, 3333 Coyote Hill Road, Palo Alto, California 94304.

[4] Yu-Ting Pai and Yu-Kumg Chen, “The Fastest Carry Lookahead Adder”, Department of

Electronic Engineering, Huafan University.

[5] Prof. Kris Gaj, Gaurav, Doshi, Hiren Shah, “Sine/Cosine using CORDIC Algorithm”.

[6] S. F. Oberman and M. J. Flynn, “Division algorithms and implementations,” IEEE Transactions

on Computers, vol. 46, pp. 833–854, 1997.

[7] Milos D. Ercegovac and Tomas Lang, Division and Square Root: DigitRecurrence Algorithms

and Implementations, Boston: Kluwer Academic Publishers, 1994.

[8] ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, 1985.

[9] Behrooz Parhami, Computer Arithmetic - Algorithms and Hardware Designs, Oxford: Oxford

University Press, 2000.

[10] Steven Smith, (2003), Digital Signal Processing-A Practical guide for Engineers and Scientists,

3
rd

 Edition, Elsevier Science, USA.

[11] D. J. Bernstein. Multidigit Multiplication for Mathematicians. Advances in Applied Mathemat-

ics, to appear

[12] A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Automata. Soviet Physics-

Doklady, 7 (1963), 595-596.

[13] D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algorithms.

Addison-Wesley,Reading, Massachusetts, 3rd edition, 1997.

[14] Addanki Purna Ramesh,A.V.N Tilak And Dr.A.Mallikarjuna Prasad[2] Implemented “FPGA

Based High Speed IEEE-754 Double Precision Floating Point Multiplier using verilog” pp.978-

1-4673-5301-4/13/$31.00 ©2013 IEEE.

