
International Journal of Research Studies in Science, Engineering and Technology

Volume 2, Issue 1, January 2015, PP 34-38

ISSN 2349-4751 (Print) & ISSN 2349-476X (Online)

©IJRSSET 34

SQL Aggregation Operations for Horizontal Distributed Data

Mouni Kurama
#1

, K. Johnpaul
#2

#1 CSE, Nova College of Engineering & Technology, Vegavaram, Jangareddy Gudem,

#2B-Tech, M-Tech, Associate Professor, Nova College of Engineering & Technology, Vegavaram,
Jangareddy Gudem

Abstract: Importance of information sets could be ascribed in distinctive spaces, for example, Verification of

productions, longitudinal exploration, Interdisciplinary utilization of information, Valorization and so on. As

opposed to utilizing outsider business devices to create information sets for exploration from RDBMS, SQL

Built In Aggregates might be utilized. Fundamental SQL collections restrictions to give back one section for

every collected gathering utilizing gathering capacities is overcome by a straightforward, yet influential,
methods(case,pivot,spj) to create amassed sections in a flat even format helped with an agreeable programming

dialect. CASE and PIVOT assessment routines are essentially speedier than the SPJ strategy, considering the

imperativeness of an all encompassing execution to improve the working of existing local RDBMS systems, for

example, SPJ as opposed to manufacture new ones, we propose to utilize Join Enumeration methodologies to

upgrade the execution of SPJ. The methods incorporates a question tree era with quantifiers calculation, which

incorporates relations referenced by the join predicate that are utilized to partner each one join predicate

furthermore considering extra relations required by a predicate to save the semantics of the first inquiry. The

methods enhances SPJ execution fundamentally since applying totals ahead of schedule in inquiry preparing

can give huge execution upgrades.

Index Terms: Horizontal Aggregation, CASE, PIVOT,SQL Data.

1. INTRODUCTION

There are two primary parts in such SQL code: joins and collections. The most generally known
accumulation is the total of a section over gatherings of lines. There exist numerous conglomeration

capacities and administrators in SQL. Tragically, all these accumulations have confinements to

manufacture information sets for information mining purposes. The primary reason is that, as a rule,

information sets that are put away in a social database (or an information distribution center) originate
from On-Line Transaction Processing (OLTP) frameworks where database blueprints are

exceptionally standardized. In view of current accessible capacities and statements in SQL, a

noteworthy exertion is obliged to process collections. Such exertion is because of the sum and
multifaceted nature of SQL code that needs to be composed, advanced and tried. Standard

conglomerations are difficult to decipher when there are numerous result lines. new class of total

capacities that total numeric declarations and transpose results to create an information set with a level

format. Capacities having a place with this class are called flat aggregations. first, they speak to a
layout to produce SQL code from an information mining apparatus. This SQL code decreases manual

work in the information planning stage in an information mining undertaking. Second, since SQL

code is naturally produced it is liable to be more productive than SQL code composed by an end
client. Third, the information set might be made altogether inside the DBMS. Even accumulations

simply oblige a little punctuation expansion to total capacities brought in a SELECT explanation.

We create a procedure for pushing Gps down inquiry trees of Select-task join may utilize
conglomerations like max, whole, and so on and that utilize discretionary capacities as a part of their

choice conditions. Our procedure pushes down to the most reduced levels of a question tree total

calculation, copy end, and capacity reckoning.

2. HORIZONTAL AGGREGATIONS

Our main goal is to define a template to generate SQL code combining aggregation and transposition

(pivoting). A second goal is to extend the SELECT statement with a clause that combines
transposition with aggregation. A method, SPJ method, is used to evaluate horizontal aggregations

which relies on relational operations. That is, select, project, join and aggregation queries. In order to

SQL Aggregation Operations for Horizontal Distributed Data

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 35

evaluate this query the query optimizer takes three input parameters: (1) the input table F, (2) the list
of grouping columns L1;…. ;Lm , (3) the column to aggregate (A). In a horizontal aggregation there

are four input parameters to generate SQL code: 1) the input table F, 2) the list of GROUP BY

columns L1;Lj , 3) the column to aggregate (A), 4) the list of transposing columns R1; … ; Rk.

SELECT L1; …; LJ, H(A BY R1; … ; Rk)

FROM F

GROUP BY L1; … ; LJ;

The result rows are determined by columns L1; … ; LJ in the GROUP BY clause if present. Result
columns are determined by all potential combinations of columns R1; … ; Rk, where k = 1 is the

default.

The main reasons are that any insertion into F during evaluation may cause inconsistencies: (1) it can

create extra columns in FH, for a new combination of R1; … ; Rk; (2) it may change the number of
rows of FH, for a new combination of L1; … ; LJ ; (3) it may change actual aggregation values in FH.

Therefore, the result table FH must have as primary key the set of grouping columns { L1; … ; LJ}

and as non-key columns all existing combinations of values R1; … ; Rk.

A horizontal aggregation exhibits the following properties:

1) n= | FH |matches the number of rows in a vertical aggregation grouped by L1; … ;Lj .

2) d = | πR1,….,Rk (F) |

3) Table FH may potentially store more aggregated values than FV due to nulls. That is, | FV | ≤ nd.

DBMS limitations: On the other hand, the second important issue is automatically generating unique

column names. However, these are not important limitations because if there are many dimensions

that is likely to correspond to a sparse matrix (having many zeroes or nulls) on which it will be
difficult or impossible to compute a data mining model. The column name length issue can be solved

by generating column identifiers with integers and creating a description table that maps identifiers to

full descriptions, but the meaning of each dimension is lost. An alternative is the use of abbreviations,
which may require manual input.

3. SPJ METHOD

The basic idea is to create one table with a vertical aggregation for each result column, and then join
all those tables to produce FH. We aggregate from F into d projected tables with d Select-Project-

Join-Aggregation queries (selection, projection, join, aggregation). Each table FI corresponds to one

subgrouping combination and has {L1; … ;Lj} as primary key and an aggregation on A as the only
non-key column. It is necessary to introduce an additional table F0, that will be outer joined with

projected tables to get a complete result set. We propose two basic sub-strategies to compute FH. The

first one directly aggregates from F. The second one computes the equivalent vertical aggregation in a
temporary table FV grouping by L1; … ;Lj ; R1; … ; Rk.

Figure 1. Main steps of methods based on FV (un optimized)

Select Distinct

R1,……,Rk

SPJ

d left joins

Compute FH

Select Distinct

R1,……,Rk

Mouni Kurama & K. Johnpaul

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 36

The statement to compute FV gets a cube:

INSERT INTO FV

SELECT L1; … ; LJ ; R1; … ; Rk V(A)

FROM F

GROUP BY L1; … ; LJ; R1; … ; Rk;

Table F0 de_nes the number of result rows, and builds the primary key. F0 is populated so that it

contains every existing combination of L1; … ; LJ. Table F0 has { L1; … ; LJ } as primary key and it

does not have any non-key column.

INSERT INTO F0

SELECT DISTINCT L1; … ; LJ

FROM {F| FV };

In the following discussion I € {1;… ; d}. we use h to make writing clear, mainly to define boolean
expressions. We need to get all distinct combinations of subgrouping columns R1; … ; Rk, to create

the name of dimension columns, to get d, the number of dimensions, and to generate the boolean

expressions for WHERE clauses. Each WHERE clause consists of a conjunction of k equalities based
on R1 ; … ;Rk.

SELECT DISTINCT R1; … ;Rk

FROM {F|FV};

Tables F1; … ; Fd contain individual aggregations for each combination of R1; … ;Rk. The primary

key of table FI is { L1; … ; LJ }.

INSERT INTO FI

SELECT L1; … ;Lj ; V (A)

FROM {F|FV}

WHERE R1 = v1I AND .. AND Rk = vkI

GROUP BY L1; … ;Lj ;

Then each table FI aggregates only those rows that correspond to the Ith unique combination of R1; …

;Rk, given by the WHERE clause. A possible optimization is synchronizing table scans to compute the

d tables in one pass. Finally, to get FH we need d left outer joins with the d + 1 tables so that all
individual aggregations are properly assembled as a set of d dimensions for each group. Outer joins

set result columns to null for missing combinations for the given group. In general, nulls should be the

default value for groups with missing combinations. We believe it would be incorrect to set the result

to zero or some other number by default if there are no qualifying rows. Such approach should be
considered on a per-case basis.

INSERT INTO FH

SELECT

F0.L1; F0.L2; … ; F0.LJ;

F1.A; F2.A; … ; Fd.A

FROM Fd

LEFT OUTER JOIN F1

ON F0.L1 = F1.L1 and … and F0.LJ = F1.LJ

LEFT OUTER JOIN F2

ON F0.L1 = F2.L1 and … and F0.LJ = F2.LJ

….

LEFT OUTER JOIN Fd

ON F0.L1 = Fd.L1 and …. and F0.LJ = Fd.LJ ;

SQL Aggregation Operations for Horizontal Distributed Data

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 37

We introduce the notion of a generalized projection that unifies duplicate eliminating projections
corresponds to the SQL distinct adjective, duplicate preserving projections, group by, and

aggregations, in a common framework.

4. GENERALIZED PROJECTION

We introduce a generalized projection operator, denoted by the symbol π , that is similar to

aggregation operator. A GP takes as its argument a relation R and outputs a new relation based on the

subscript of the GP. The subscript specifies the computation to be done on R. The subscript has two
parts:

1. A set of group by components. We refer to them as components and not attribute because they may

be functions of attributes and not just attributes. For instance, the GP πA*B (R) is written as the

following SQL query:

Select (A*B) from R group by (A*B).

2. A set of aggregate components. For example, we can write the GP πD,max(S) (R) as the query:

Select D, max(S) from R group by D.

Here D is the only group by component and max(S) is the only aggregate component. It is simple to

observe that a GP has exactly one tuple for each value of the group by components and thus does not
produce any duplicates in its output. Here class of queries expressed in a query tree. The permitted

query trees have ve types of nodes: selection nodes, projection nodes, cross-product nodes, group by

nodes, and aggregate-group by node pairs.

Projections may preserve duplicates or discard them.. Selection nodes eliminate tuples from the input

relation, group by nodes do projection duplicate elimination, and cross-product nodes output the cross

product of two input relations. Aggregate- group by node pairs have a group by node followed by an

aggregate node. An aggregate-group by node pair produces as output a relation with one tuple for
every distinct value in the input relation of the group by attributes.

GPs are incorporated into query trees using a two step process:

1. Push GPs down a query tree and annotate the query tree with a GP above each node in the tree.

2. Rewrite the annotated query tree to incorporate the GPs that the query optimizer chooses to

evaluate and to eliminate all other GPs introduced in the push-down process.

After the top-down pass associates a GP with some or all nodes of the query tree, the query optimizer
decides which GPs improve the query plan. The other GPs are removed from the tree.

5. PERFORMANCE RESULTS

Most inquiries are not intrigued by individual tuples of this connection, yet rather total properties of

this connection. Consequently as a rule, we have to do a groupby on a non-key property of this

connection. At the point when this connection is joined with some other connection, that need not be
collected.

Figure 2. SPJ Performance evaluation algorithm

Mouni Kurama & K. Johnpaul

International Journal of Research Studies in Science, Engineering and Technology [IJRSSET] 38

In such cases, our system would diminish significantly the span of the enormous table before we did a
join. It could be contended that in such cases a join calculation like a hash join could be utilized to

attain a comparable result. In any case, hash joins are dificult to execute in practice and not generally

actualized. Single table accumulations being an ordinarily utilized gimmick of SQL exist within

generally frameworks. Our streamlining, when connected to question plans, possibly meddles with
join requesting, since we lessen the span of the relations partaking in the join.

6. CONCLUSION

Level accumulations help in choice making giving a naturally visible perspective of whole business.

Utilizes a basic, yet effective, mining routines (CASE, PIVOT, SPJ) of RDBMS to create

accumulated segments in an even plain design. Execution of CASE, PIVOT was viewed as average

regarding rate and scalability.spj slacks in velocity and versatility measurements. It is vital to upgrade
the working of existing local RDBMS strategies, for example, SPJ as opposed to construct new ones

to fuse mining. So we propose Join Enumeration methods. The methodologies incorporates a question

tree era with quantifiers calculation, which incorporates relations referenced by the join predicate that
are utilized to partner each one join predicate furthermore considering extra relations required by a

predicate to protect the semantics of the first inquiry.

REFERENCES

[1] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, A. Gupta, L. Sheng, and S.

Subramanian. Spreadsheets in RDBMS for OLAP. In Proc. ACM SIGMOD Coference, pages

52.63, 2003.

[2] Venky Harinarayan ,Ashish Guptay “Generalized Projections: a Powerful Query-Optimization

Technique “

[3] “Vertical and Horizontal Percentage Aggregations”, Carlos Ordonez Teradata, NCR San Diego,

CA 92127, USA.

[4] G. Bhargava, P. Goel, and B.R. Iyer. Hypergraph based reordering of outer join queries with
complex predicates. In ACM SIGMOD Conference, pages 304.315, 1995.

[5] U. Dayal, N. Goodman, and R. H. Katz. “An Extended Relational Algebra with Control over
Duplicate Elimination”. In Proceedings of the ACM Symposium on Principles of Database

Systems, 1982, pages 117-123.

[6] Venky Harinarayan and Ashish Gupta. Optimization Using Tuple Subsumption. To appear in

ICDT 95, January 1995.

