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Abstract: This paper presents that how visibility of maintenance personnel can be increased on developing 

maintenance issues by exploiting collected data and maintenance capabilities in the form of onboard SCADA 

system. The paper focuses on developing a data driven model which is capable of describing the fault free 

behaviour of main bearing temperature signal.. Then using developed model, the difference between the estimated 

main bearing temperature and observed main bearing temperature which is called residual is used to detect the 
presence of a potential incipient fault detection.  
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1. INTRODUCTION 

Condition based maintenance has been described as a process that require technologies and people skills 

that integrates all available equipment condition indicators to make timely decisions about maintenance 

requirement of important equipment. Today most of the maintenance actions are carried out either by 
preventive maintenance or corrective maintenance approach. The preventive maintenance generally have 

fixed intervals to prevent the components from failure where as corrective maintenance is performed 

after a fault or breakdown has occurred. But these approaches proves very costly in many cases due to 
loss in production, cost of keeping spare parts , quality deficiencies etc. Condition based maintenance 

involves the measurement or monitoring of specific parameters which directly corresponds to machine. 

The main difference between preventive maintenance and condition based maintenance is that condition 

based maintenance uses various methods of monitoring for checking the condition of the machine to 
determine the actual mean time for failure where as preventive maintenance depends upon industrial 

average life statistics. Condition based maintenance has three complimentary levels of implementations: 

i. Data acquisition step, to obtain data relevant to system health. 

ii. Data processing: Data processing analyze the data for interpretation, also known as 

Diagnosis. 

iii. Maintenance decision making step, to implement best optimum maintenance policy 
(Prognosis). 

The maintenance of critical plant and machinery is a major expense for manufacturers and operators. 

Maintenance practices have traditionally employed one of two philosophies; preventative or corrective. 

Preventative maintenance involves performing regular scheduled maintenance to maintain equipment in 
good health and avoid in-service equipment failures. Corrective maintenance involves running equipment 

until it fails and then taking remedial action. Both approaches have drawbacks. Preventative maintenance 

is expensive to perform and the serviceable life of equipment and components is not maximized. Corrective 
maintenance maximizes the serviceable life of equipment but risks damage to other equipment when 

failures occur. Regardless of which approach is taken, unexpected equipment failures result in equipment 

downtime, and thus the necessary maintenance will always be reactive. Consequently, the resulting 

equipment downtime will be prolonged while the necessary spare parts, personnel, and equipment, 
necessary to carry out the required maintenance, are organized.  

2. LITERATURE REVIEW  

Palle Christensen and Gregor Gie bel (2001) [1] introduces a new condition monitoring tool which 

provide a fully automatic supervision and control of the wind farm on internet and data can be accessed 

with common interface for all form of data from farm. 
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T Holroyd (2001) [2] constructed a test rig to seeded the defect of varying sizes on outer races of bearing. 
A comparison has been done between AE (Acoustic Emission) and vibration analyses. It was concluded 

that AE not even detect earlier faults but can also provide indication of defect size. 

N. Jamludin et al. (2001) [3] present a work in which they apply the stress waves analyses to detect early 

stages damages of bearing at a very low speed i.e. 1.12r/min. 

Shjn Dander (2002) [4] presented a work in which they access the use of time domain model based fault 

detection and identification (FDI) method for application to a horizontal axis wind turbine (HAWT) that 

uses pitch to vane control. They use two approaches, the system identification approach and observer 
based approach using the kalman filter. They construct a horizontal axis wind turbine model and use the 

simulation to test various approaches. Two algorithms based on kalman filter are presented which 

provide a reliable estimate of the wind speed by including it in an augmented system state.  

T.W. Verbruggen (2003) [5] develop a inventory of available condition monitoring techniques and 
selecting a set which has added a value for wind turbines. The area for further development of sensors, 

algorithm for data analyses were investigated. 

L. Mihet-Popa et al (2003) [6] proposed a technique based on steady state analyses and applied to 
induction generators. This technique identify interturn stator fault and rotor asymmetries.  

L.W.M.M. Rademakers et al. (2004) [7] they present a condition monitoring system for fiber optic 

blades. They installed the system on a NORDEX turbine for about one year to get operational experience 
with it to optimize and extend the algorithm. The data is stored on turbine module with back up at ECN. 

Based on this historical data algorithm were tested before implementing on any turbine system. 

Giurgiutiu, V & Cuc, A. (2005) [8] presented a damage detection method which was based on ultrasonic 

rely due to propagation and reflection of elastic waves within the material. They identify local damages 
and flaws via blade field disturbances. They propose the use of piezoelectric transducer in place of 

conventional non destructive transducer because piezoelectric transducer can act both transmitter and 

receiver of ultrasonic waves. 

Douglas H. (2005) [9] presented a work in which a steady state technique has been applied e.g. Motor 

Current Signature Analyses (MCSA) and Extended Park’s Vector Approach (EPVA) and a new 

technique which was combination of EPVA and discrete wavelet transform and statics to detect the turn 
faults in doubly fed induction generators (DFIG). The proposed technique shows that steady state 

technique is not effective when DFIG’s operate under transient condition but stator turn faults can be 

detected under transient conditions. 

Christopher A. Walfard (2006) [10] highlights the relevant issues of reliability for wind turbine power 
generation projects. They identify the cost elements associated with wind farm operation and 

maintenance. Causes of uncertainty in reliability estimation of wind turbine was also discussed.  

C. Walfard, D. Robert (2006) [11] present a work in which they conduct a cost benefit analyses and 
estimates that cost liability for failure of wind turbine after four to five years is $75,000 to $ 2,25,000 per 

event for megawatt scale turbine. 

R.W. Hyers et al. (2006) [12] compare the condition monitoring in wind turbine with monitoring and 

prognosis in helicopter gearboxes. They evaluate the state of art of electronic control and power 
electronics and compare with state of art in aerospace. 

Jesse A. Andrawus et al. (2006) [13] apply the RCM approach to horizontal axis wind turbine to detect 

various failure modes and their causes and effects on system operation. The failure consequences are 
estimated in term of financial terms by evaluation. Over the whole life cycle of wind turbine the CBM 

activities are identified and assessed to maximize the return on investment in wind farms.  

David Mc Millan and Grahm W. Ault (2007) [14] measure the benefits of condition monitoring 
quantitatively. They construct a probabilistic model which uses various methods including discrete-time 

Markov Chains, Monte Carlo method and time series modeling. 

Ayetullah Gunel et al. (2007) [15] present a new technique i.e. fluid condition monitoring system in 

which temperature of oil filter and cooling subsystems are monitored with various sensors. The other 
parameters such as absolute pressure drop across the filter, dielectric constant and viscosity are also 

monitored to analyze oil degradation. The data was recorded for two years for two turbines. Then filter 
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lifetime can be predicted by processing the recorded data with statistical and semantic method. The 

combination of statistical and semantic method make the technique hybrid. 

Michael Wilkinson et al. (2007) [16] develop a electomechanical test rig for assessment that which 

sensor and fault detection algorithm should be used in a condition monitoring system for operational 

wind turbines. The test rig has been driven at variable speed to investigate the behavior of wind turbine. 
A number of fault detection algorithms have been tested on each sensor signal. 

Edwin Wiggelinkhuizen et al. (2007) [17] set up a wind farm of five turbines and several condition 

monitoring systems has been installed. Traditional measurement systems are also used. A algorithm has 
been developed which can be integrated with a SCADA system. 

German Wind energy Association (2007) [18] highlights the objective and condition monitoring intervals 

according to the wind turbine size in megawatt. They highlight the technical experts qualification 

required for CM plan, inspection requirements, maintenance requirements and technical control system 
requirements. 

Michael R. Wilkinson (2007) [19] constructed 30 kW test rig which have the same feature as wind 

turbine drive train, for signal processing technique necessary for variable speeds and high torque 
variation application. The faults are detected by investigating various approaches of condition monitoring 

on this test rig, and measuring torque, speed and shaft displacement and gearbox vibrations.  

R. Andrew Swartz et al. (2008) [20] deployed wireless sensor technology on two wind turbines to 
construct better models of wind turbine dynamic behavior and response to loading. 

Scott J. Johnson et al.(2008) [21] presented a report in which they introduces a number of active 

techniques which can be used for control of wind turbine blades. They apply active flow control (AFC) to 

wind turbine performance and loads. A special focus was given on actuators and devices and flow 
phenomena caused by each device. 

Mike Woebbeking (2008) [22] performed various kind of inspections at turbines. The inspection include 

periodic monitoring, operation and maintenance surveillance, inspection after commissioning of wind 
turbine etc. The results shows that 26% of defects and damages are due to gearbox, 17% from generator 

and 13% from drive train. 

Asif Saeed (2008) [23] implemented various conventional and latest techniques of condition monitoring 

including signal processing methods for vibration analyses for early fault detection. As a result of the 
study, infrared thermography is applied as an online condition monitoring for wind system as a retrofit 

design to increase performance of early detection system. 

William A. Vachon (2008) [24] presented a work which focuses on joint wind project involving IMLD 
and IpsWich school District (ISD). They install a single MW scale wind turbine generator and the output 

of the generator is shared in proportion according to funds provided by each party, and value of power 

delivered to each party reflect the projected time of use of costs. Thus goal of the study was to project the 
economics of the project. 

E Lie-Ahmar et al (2008) [25] presented a work which investigate specific transient techniques suitable 

for electrical and mechanical failures in an induction generator based wind turbine. An experimental set 

up of 1.1kW has been constructed and investigations shows that proposed technique can diagnose failure 
under transient condition. 

Cattin Rene et al. (2009) [26] concludes some results from turbines working in ice regions. They revealed 

that in cloud conditions the air temperature can be used as an indicator for detecting icing conditions. 
They point out that there is no ice detector in market which can measure icing reliably. The results of 

Enrcon E-40 turbine shows that the ice detection via power curve can be a better method except for light 

icing and in case of low wind speed. They point out that it is not possible to melt ice during one heating 
cycle specially at leading edge of blades thus heat transfer to leading edge should be optimized. 

Yassine Amirat et al. (2009) [27] discussed different types of faults, Their generated signature and their 

diagnostic scheme by keeping in mind the need for future research. 

T. Barszczet et al. (2009) [28] states that there is lack of sufficient data to perform training of method, 
thus some new states should have created, when there is data different from all known states. Thus they 
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apply Neural Network approach because Neural is a proper tool for classification of operational states in 
wind turbine and is also capable to recognize new states.   

R.F. Mesquita et al. (2010) [29] apply the Neural network to analyze all the wind turbine information to 

identify possible future failure, based on past data of turbine. They show that neural network is a valid 

tool to make an early detection of failure in some wind turbine equipments. 

Emilio Miguelanez et al. (2010) [30] presents the role of SeeByte’s RECOVERY system within the wind 

industry, specially focus on offshore turbines. Systems of today gives false alarms most of the time which 

results in incorrect diagnosis and unnecessary intervention and important warnings are ignored. A 
RECOVERY system has been developed to guide the fault detection process and better automate 

knowledge discovery to improve diagnostics. The diagnostics concept is represented on the basis of 

system observation design pattern. This holistic system improve the diagnostic correctness by taking care 

of events and sensors values for complete turbine system. Thus it reduces the no-fault-found situations. 

Bincheng Jiang (2010) [31] analyze the dynamic performance of drive train in wind power station and 

dynamic behavior of gearbox under normal and transient load conditions has been studied to investigate 

the reasons of drive train misalignment in future work. A 1-D torsional multibody dynamic model of the 
drive train taking into account the effect of aerodynamic force and excitation has been developed. 

Wenxian Yang et al. (2010) [32] presented a CM technique in which generator output power develop a 

fault detection signal. A algorithm is used which uses continuous wavelet transform. Adaptive filters are 
used to track the energy in prescribed time-varying fault-related frequency bands in power signals. The 

generator control the central frequency and band width is related with speed fluctuations. Using this 

technique faults can be detected with low calculations time. 

Yassine Amirat et al. (2010) [33] proposed a new fault detector which is based on amplitude 
demodulation of the three phase stator. They proves by simulation that this low complexity method can 

be well applied for stationary and non stationary behavior. 

Richard Dupuis (2010) [42] explains that how bearing and gear rolling elements fails by surface fatigue 
mode and also study the characteristics of debris produced by failure mode. Their work present that how 

the accumulated debris damage limit can be counted on the basis of gear geometry. They develop an 

effective PHM technique by presenting actual data obtained from seeded fault bearing and gear test. 

 Zhi Gang Tian et al. (2010) [34] develop a optimal CBM defined by two failure probability thresholds 

values at wind turbine level. The CBM decisions can be made by calculating failure probability values on 

the basis of condition monitoring and prognostic data. The cost of CBM technology is evaluated by 

simulation. 

F.D. Coninck et al. (2010) [35] constructed a back to back gearbox setup which is one of the largest in 

world. The complexity of dynamics was tackled by the concept of load cases. Each load case represent 

different turbine behavior. A control architecture was developed to handle the complex interactions 
between mechanical dynamics and electrical controller of test rig. The test rig is fit for experimental 

validation of dynamic load situation models. 

Bodil Anjar et al. (2011) [36] conducted a feasibility study and they investigate the possibilities of using 

thermal condition monitoring of the systems and components in wind turbines. They conclude that 
thermography is suitable for monitoring electrical systems, transformers and also for fire detection and 

fire extinguishing. The IR cameras can be mounted on a pan tilt unit for continuous monitoring. They 

show that as the size of wind power plant increases the cost for downtime and repair also increases. 

Shuangwen Sheng (2011) [37] present a study work which focuses on results obtained by various CM 

techniques from a damaged Gearbox Reliability Collaborative (GRC) test gearbox. The study shows the 

capabilities and limitations of each technique. The results from a test gear box under healthy condition 
are compared with damaged gearbox. A fieldtest of one GRC gearbox shows that damaged gearbox 

experienced two unexpected oil losses which damage its internal components. The damaged gearbox is 

reset by using different CM techniques which help in evaluating the different CM techniques. 

Pratesh Jayaswal et al. (2011) [38] present a work in which they acquired the vibration signals of 
bearings and analyzed them with the help of vibration analyses techniques. In present work they detect 
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the earlier fault in bearing using vibration monitoring. By study the FFT spectrum of bearing vibration 

signal they access the condition of bearing. 

Peng Guo et al. (2011) [39] proposed a new technique Autoassociative Kernel Regression (AAKR) 

which is used to construct the normal behavior model of gearbox temperature. The measurement 

temperature become significant, when residual between AAKR estimates on incipient failure of gearbox. 
To detect the changes of the residual mean value and standard deviation in timely manner a moving 

window statistical method is used. As one of these parameters exceeds the predefined value the incipient 

failure flagged. 

Secil Vorbak Nese et al. (2011) [40] constructed a model of three blades horizontal axis turbine and fault 

due to possible blade deformation was studied. By applying Continuous Wavelet Transform (CWT) 

approach a comparison is done between generator rotor speed and torque for healthy and damaged 

blades.  

Peng Gua (2012) [41] used the history data of Supervisory Control and Data Acquisition (SCADA) 

system and analyzed this data for detecting the failure of turbine generator bearing. A new condition 

monitoring method based on Nonlinear State Estimate Technique (NSET) is proposed which is used to 
construct the normal behavior model of generator bearing temperature. When the generator bearing has 

an incipient failure the residual between NSET model estimates and measured generator bearing 

temperature will become insignificant and when residual exceeds the thresholds, an incipient failure is 
flagged. 

Wenxian Yang et al. (2012) [42] proposed that reliability centered maintenance is best for offshore wind 

turbines which include preventive and predictive maintenance techniques enabling wind turbine to 

achieve high availability and low cost of energy. They present the wind industry with a detailed analyses 
of the current challenges with existing wind turbine condition monitoring technology. 

Simon Gill et al. (2012)[43] used the operational data from wind turbine to estimate bivariate probability 

distribution functions representing the power curves of existing turbines. Hence deviations from expected 
behavior can be detected. They proposed application of empirical copulas to reduce the complexity 

between active power and wind speed which was either impossible to approximate by any parameterized 

distribution. 

Bill Chun et al. (2012) [44] addressed that cost of manufacturing, logistics, installation, grid control and 
maintenance of offshore wind turbine is high. They apply Prognostics and system Health Management 

(PHM) to enhance the cost effectiveness of the maintenance strategy. 

Michael Wilkinson et al. (2013) [45] proposed that operational costs get greatly reduced by monitoring 
the condition of major components in the drive train. They conduct the validation study on this method 

using five wind farms and conclude that a good detection accuracy and high detection rate is possible.  

Dr. Shaik Nafeez Umar et al. (2013) [46] apply acoustic emission technique for condition monitoring of 
wind turbine and they conclude that AE technique can be successfully applied for condition monitoring 

of low speed rotating components. They observed that technique is able to detect very small energy 

release rates due to incipient failure at starting stage. 

Schlechtingen, Meik (2013) [47] present a system for wind turbine condition monitoring by using 
adaptive Neuro-Fuzy interference systems (ANFIS). To fulfill the purpose a normal behavior model for 

common SCADA are developed to detect abnormal signals. 

Van Horenbeek, Adriaan et al. (2013) [48] state that it is difficult to implement condition monitoring 
system due to uncertain parameters. They take into account the performance of the condition monitoring 

system itself which had been neglected in most of available literature. The modeling is done on the base 

of P-F curve for for different failure modes and then implemented on turbine gearbox. The case study 
proves that condition monitoring system is beneficial as compare to other maintenance strategies and 

benefit depends directly on performance of CBM.  

3. CONDITION MONITORING OF WIND TURBINE 

A Change in process parameter is an indicative of a developing failure [14]. A modern condition 

monitoring system consist of sensors and a processing unit which continuously check and record the 

condition of the component. There are various techniques to access the component condition. These 
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techniques include vibration analyses, acoustics, oil analyses, strain measurement, and thermography. In 
case of wind turbine these techniques are used to monitor the major components such as blades, gear box, 

tower, bearings etc. A condition monitoring may be ONLINE or OFFLINE. A ONLINE monitoring 

provide instantaneous feedback of condition while OFFLINE provide data collected at regular intervals. 

For a fast fault detection while the component is in operation require good data acquisition system and 
appropriate signal processing. Maintenance tasks may be planned and scheduled with great efficiency 

which increase the reliability, safety and maintainability of the system and reduce the downtime and 

operational costs [15]. Therefore CM techniques are widely adopted by the industry [16,17] and its most 
benefits are used in offshore wind farms [18]. The economic exploitation of wind energy is largely 

dependent upon the high reliability of wind turbines and their components. Wind turbines operate in harsh 

environments which generate large loads on wind turbine blades, which can lead to faults and failures in 

wind turbine components. In addition, with wind farms increasingly being located offshore, the costs of 
performing both scheduled and unscheduled maintenance are even greater. Studies have suggested that 

maintenance costs can consume up to 20 to 25% of the total income generated, and that a considerable 

percentage of these costs are due to unexpected equipment failure, which require corrective maintenance 
[19]. As a result, wind farm operators are keen to exploit condition-based maintenance in an effort to 

reduce overall maintenance costs.  

4. DIAGNOSTICS, PROGNOSTICS METHODS AND TECHNIQUES 

4.1. Fault Diagnostics   

The speed-up gearbox is one of key components in the large-sized wind turbine. During the operation, 

some faults often cause long maintenance downtime and higher cost. In this investigation, the gearbox 
faults were diagnosed by Bayesian Networks method. Based on the analysis of fault factors, the different 

signal features of fault diagnosis were confirmed. According to Bayesian Networks theory, the fault 

model of speed-up gearbox was established. The probability of sub-node was obtained by the conditional 
probability relationship of different nodes. Using the conditional independence of each node, and 

simplifying the probability distribution, the fault probability was counted out. Finally, the availability of 

Bayesian Networks method is proved by a calculation case on the test-platform. The study shows that the 

method can improve the fault diagnosis and operation level of the large-sized wind turbine when be used 
to judge the fault position in the gearbox.. Indeed, as described by Vachtenvanos et al. [13] "the diversity of 

application domains in fault diagnostics is matched only by plurality of enabling technologies that have 

surfaced over the years, in attempts to diagnose detrimental events". For the interested reader, a series of 
review publications by Venkatasubramanian et al. [20-22] and Jardine et al. [23] provide an excellent 

introduction and reference source to the different approaches and techniques used in fault diagnostics, and 

the different applications to which such techniques have been applied. In addition to the development of 
fault diagnostic capabilities for specific application domains, a number of fault diagnostic related issues 

are also often considered in the development of PHM solutions. Two such issues are failure modes and 

effects criticality analysis (FMECA) studies and feature extraction techniques.  

4.1.1 FMECA Studies  

 A FMECA study considers each mode of failure for every component of a system, and determines their 

effects on system operation. Failure modes are classified in relation to likelihood of the failure occurring 

and severity of failure effects. Likelihood in combination with severity will generate a criticality rating 
for each failure mode, which is based upon a predetermined risk matrix. The key benefit of performing a 

FMECA is to detect risks to system performance. The cost of mitigating such risks is a lot cheaper if they 

are detected early, hence undertaking a FMECA in the early stages in design is desirable. If FMECA is 

part of a design development, the appropriate design option can be chosen for optimised reliability, 
maintainability and availability. This will help in achieving performance targets and improve project cost 

efficiency. The objective of FMECA studies is to relate failure events to root causes [13]. As part of this 

objective, FMECA studies investigate all relevant issues regarding potential failure modes of monitored 
systems including: the severity of different failure modes, their frequency of occurrence, their testability, 

the fault symptoms which are suggestive of a systems behaviour under different fault conditions, and the 

sensors and monitoring equipment required to monitor and track fault symptomatic behaviour.  

4.1.2. Feature Extraction  

Feature extraction means preprocessing of equipment sensor data. The feature extraction stage is 
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specially designed for generation of a vector to infer the current fault status of monitored system. 

The type of vector generation depends upon type of application.  

4.2. Fault Prognostics  

To enable the benefits of a truly condition-based maintenance philosophy, real predictive prognostic 

capabilities are required. Such capabilities are designed to provide maintenance staff with prior notice of 
pending equipment failure and ideally provide sufficient lead-time so that the necessary personnel, 

equipment and spare parts can be organized and deployed, thus minimizing both equipment downtime and 

maintenance costs.  

Real predictive prognostics is understood to be the generation of long-term predictions, describing the 

evolution of a signal of interest, or fault indicator, for the purpose of estimating the remaining useful 

life (RUL) of a failing system or component [26].  

4.2.1. The Remaining Useful Life PDF  

One of the key concepts within the prognostics framework is the RUL PDF. The RUL PDF is the 

output generated by a prognostic algorithm, describing the distribution in time of likely equipment 

failure times.  

Consider Figure 4.2, which illustrates the key concepts of a RUL PDF. At time tP , a prediction is made 

and an estimate of the RUL PDF is generated. Once the RUL PDF has been generated, the next 

question is to decide when to carry out corrective maintenance actions. Ideally, the time chosen for 

maintenance action will both avoid equipment failure and maximise the useful-life of the equipment. 

However, these are conflicting requirements and, as a consequence, selecting when to perform maintenance is 
typically an exercise in risk management. 

In the development of a requirements specification for a prognostic algorithm, a key consideration will be the 

maximum allowable probability of failure (PoF). This value defines the maximum acceptable level of risk of 
equipment failure, beyond which equipment can no longer be operated as the risk of equipment failure is 

deemed excessive. Using the defined maximum allowable PoF and the estimated RUL PDF, an important 

value known as the just-in-time-point (JITP) can be identified. The JITP defines the latest point in time 
before which corrective maintenance actions must be carried out to avoid operating equipment beyond the 

maximum allowable PoF. In a real-life application, selecting   the maximum allowable PoF would usually 

consider a number of factors. 

 

Figure 4.2. The remaining useful life PDF 

In Figure 4.2, a maximum allowable PoF value of 5% is assumed for illustrative purposes. Once the JITP has 

been identified, another key measure can be computed, the lead-time interval (LTI). The LTI is defined as 

the time interval between the time the prediction is generated tP , and the JITP tJIT P , so that 

t
LTI

=tJITP t
P
                                                                                                                                               (4.1)                                                                                                                                                                            

The LTI provides a real-time estimate of the remaining time before a system operates above the 

maximum allowable PoF. Maintenance actions must be performed before this time elapses, to avoid 

operating equipment beyond the maximum allowable PoF. The RUL PDF and the LTI value represent 
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key information that should be presented to maintenance staff as part of the human-machine interface (HMI). 
This information allows for maintenance staff to make informed operational decisions, regarding when to 

perform maintenance and avoid instances of equipment failure.  

4.2.2. Prognostic Techniques  

Generally there are two types of prognostics approaches used for predicting the RUL of monitored system. These 
approaches can be categorized as model based and data driven based. 

4.2.2.1. Model-Based Prognostic Approaches  

Model-based prognostics attempts to incorporate physical understanding (physical models) of the system 
into the estimation of remaining useful life (RUL). Modeling physics can be accomplished at different 

levels, for example, micro and macro levels. At the micro level (also called material level), physical 

models are embodied by series of dynamic equations that define relationships, at a given time or load 

cycle, between damage (or degradation) of a system/component and environmental and operational 
conditions under which the system/component are operated. The micro-level models are often referred as 

damage propagation model. For example, Yu and Harris’s fatigue life model for ball bearings, which 

relates the fatigue life of a bearing to the induced stress, Paris and Erdogan's crack growth model, and 
stochastic defect-propagation model are other examples of micro-level models. Since measurements of 

critical damage properties (such as stress or strain of a mechanical component) are rarely available, 

sensed system parameters have to be used to infer the stress/strain values. Micro-level models need to 
account in the uncertainty management the assumptions and simplifications, which may pose significant 

limitations of that approach. Macro-level models are the mathematical model at system level, which 

defines the relationship among system input variables, system state variables, and system measures 

variables/outputs where the model is often a somewhat simplified representation of the system, for 
example a lumped parameter model. The trade-off is increased coverage with possibly reducing accuracy 

of a particular degradation mode. Where this trade-off is permissible, faster prototyping may be the 

result. However, where systems are complex (e.g., a gas turbine engine), even a macro-level model may 
be a rather time-consuming and labor intensive process. As a result, macro-level models may not be 

available in detail for all subsystems. The resulting simplifications need to be accounted for by the 

uncertainty management. 

The most capable prognostic approaches use physics-of-failure models of the system under observation, 

derived from first principles. The main application domain of such approaches, to date, have involved the 

use of fatigue models for modelling the initiation and propagation of cracks in structural components [27].  

4.3. Data-Based Prognostic Approaches  

Data-driven prognostics usually use pattern recognition and machine learning techniques to detect 

changes in system states. The classical data-driven methods for nonlinear system prediction include the 

use of stochastic models such as the autoregressive (AR) model, the threshold AR model, the bilinear 
model, the projection pursuit, the multivariate adaptive regression splines, and the Volterra series 

expansion. Since the last decade, more interests in data-driven system state forecasting have been focused 

on the use of flexible models such as various types of neural networks (NNs) and neural fuzzy (NF) 

systems. Data-driven approaches are appropriate when the understanding of first principles of system 
operation is not comprehensive or when the system is sufficiently complex such that developing an 

accurate model is prohibitively expensive. Therefore, the principal advantages to data driven approaches 

is that they can often be deployed quicker and cheaper compared to other approaches, and that they can 
provide system-wide coverage (cf. physics-based models, which can be quite narrow in scope). The main 

disadvantage is that data driven approaches may have wider confidence intervals than other approaches 

and that they require a substantial amount of data for training. Data-driven approaches can be further 
subcategorized into fleet-based statistics and sensor-based conditioning. In addition, data-driven 

techniques also subsume cycle-counting techniques that may include domain knowledge. The two basic 

data-driven strategies involve (1) modelling cumulative damage (or, equivalently, health) and then 

extrapolating out to a damage (or health) threshold, or (2) learning directly from data the remaining 
useful life. As mentioned, a principal bottleneck is the difficulty in obtaining run-to-failure data, in 

particular for new systems, since running systems to failure can be a lengthy and rather costly process. 

When future usage is not the same as in the past (as with most non-stationary systems), collecting data 
that includes all possible future usages (both load and environmental conditions) becomes often nearly 
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impossible. Even where data exist, the efficacy of data-driven approaches is not only dependent on the 

quantity but also on the quality of system operational data. These data sources may include temperature, 
pressure, oil debris, currents, voltages, power, vibration and acoustic signal, spectrometric data as well as 

calibration and calorimetric data. Features must be extracted from (more often than not) noisy, high-

dimensional data. 

4.4. Time Series Approaches  

The simplest data driven approach to prognostics based on projection method is time series approach to 

access the level of degradation in future. There are variety of time series approaches such as 
Autoregressive models and exponential smoothing techniques. The latest time series approach used 

these days is Autoregressive integrated moving average model (ARIMA) which is driven from 

Autoregressive moving average (ARMA) model. ARMA consist of two parts Autoregressive (AR) and 

Moving Average (MA) part. The advantage of ARIMA on ARMA is that ARIMA can also be 
employed for non stationary time series signals. 

4.5. Artificial Neural Networks  

Artificial Neural Networks are relatively crude electronic models based on the neural structure of the 
brain. The brain basically learns from experience. It is natural proof that some problems that are beyond 

the scope of current computers are indeed solvable by small energy efficient packages. This brain 

modeling also promises a less technical way to develop machine solutions. This new approach to 
computing also provides a more graceful degradation during system overload than its more traditional 

counterparts. Perhaps the most common data-driven technique applied to prognostic problems are 

artificial neural networks (ANNs). ANNs model relationships between input and output variables with a 

model structure inspired by the neural structure of the brain. For ANN based approach we employ here 
the strategy where we learn the damage state as an intermediate step. To that end data were first 

transformed into log space, where damage propagation was observed to be linear. Then the rate of change 

for operational setting could be learned such that the states for which there were no supporting 
experimental data were covered by a smooth curve, employing a network with a low complexity to avoid 

overfitting. 

5. TURBINE CONDITION MONITORING ALGORITHM  

This section introduces a proposed algorithm for main bearing condition monitoring and remaining useful 

life (RUL) prediction. A model-based approach is proposed. Figure 5.1 presents a flow chart illustrating the 

different stages in the proposed condition monitoring and prognostic algorithm. The basic principle of the 
model-based approach is to develop a model for each turbine which describes the fault-free behaviour of 

the main bearing temperature. The estimated main bearing temperature generated by the fault-free model is 

then compared with the actual main bearing temperature at each iteration of the algorithm. The 

difference between the estimated and actual main bearing temperature, known as the residual, is then 
evaluated. Assuming the turbine remains fault-free, the residual signal should generate a Gaussian 

distributed signal with a mean of zero and a small variance. Once a fault develops, the residual signal may 

change and no longer be zero-mean. Analysis of the residual signal is performed by the residual 
processing and decision logic stages. Assuming no fault condition is detected, the algorithm continues to 

iterate at 10-minute intervals as data is recorded by the SCADA system.  

 

Figure 5.1. Main bearing model-based condition monitoring algorithm 

Assuming a fault condition is detected, this generates an alarm and initializes the prognostic stage, 
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which estimates the RUL of the main bearing. The algorithm then continues to iterate and the RUL 
predictions are recursively updated using the latest filtered value of the residual signal to detect fault 

conditions in the main bearing by analyzing the residual signal. Section 7.6 then describes the decision 

logic stage which is used to determine whether a fault condition is present and also describes the 

proposed RUL prediction approach and the  

5.1. Modeling Main Bearing Temperature  

In this section, the detailed steps in developing a model to describe the fault-free behaviour of the main 

bearing temperature are presented. Firstly, in Section 5.1.1, a description of the data set available for 
this study is presented. Section 5.1.2 then introduces the proposed modelling approach, including the inputs 

and model structure to be used to model the behaviour of the fault-free main bearing temperature. The 

motivation for using sparse Bayesian learning for regression to model the behaviour of the main bearing 

temperature is also discussed. Section 5.1.3 then discusses data detrending, to address the variability in 
sensor values caused by changes in the ambient temperature, as the seasons change. Finally, in Section 

5.1.4, the proposed model is trained and tested on historical turbine data to demonstrate the performance 

of the trained model on fault-free turbine data.  

5.1.1 Data Collection 

For  starting any study on onboard SCADA system it require a large amount of data for input hence data 

is collected from a medium wind farm with the help of sensors information which are installed at various 
positions of each turbine. A 6 month data is collected. The SCADA system records the average value of 

sensor information for every 10 minutes. 

5.1.2 Input Variables  

 

Figure 5.2. Turbine components layout 

Modelling the behaviour of the fault-free main bearing temperature required selection of appropriate input 

variables, which can be used to estimate the fault-free main bearing temperature under varying load 

conditions. A range of different variables were investigated to identify their usefulness in estimating the 

main bearing temperature. The final set of input variables, selected for inclusion in the feature vector for 
estimating the main bearing temperature are described below. Figure 5.2 illustrates the location of the 

different components whose sensor values are described below.  

Main Shaft RPM The heat generated in the main bearing will be a function of the load on the 

bearing. The main shaft RPM describes the load exerted on the main bearing under varying wind 
conditions.  

Hydraulic Brake Temperature The turbine brake is located on the high-speed shaft, which connects the 

gearbox to the generator, and analysis has demonstrated that, under fault-free conditions, the brake 
temperature is closely correlated with the main bearing temperature.  

Hydraulic Brake Pressure The average hydraulic brake pressure over a ten-minute interval provides a 

measure of the brake friction applied to the high-speed shaft, which in turn generates friction within the 
main bearing, resulting in a response in the main bearing temperature  

Blade Pitch Position All modern turbines employ pitch control to pitch the blades under high-wind 

conditions. While the main shaft RPM may remain constant, the load imparted on the main bearing will 

vary with the blade pitch position.  

The model used to describe the behaviour of the fault-free main bearing temperature signal is of the form  
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qˆ(s) = f (q(s  1), w1(s), w1(s  1), w2(s), w3(s), w4(s))                      (5.1)  

where qˆ(s) is the estimated main bearing temperature at time s, q(s  1) is the actual main bearing 

temperature at time s  1, and wi (s), i = 1, ..., 4, is the value of input i, at time s. The input variables, ui, represent 

the following turbine variables, which are described above  

• w1: Main Shaft RPM  

• w2: Hydraulic Brake Temperature  

• w3: Hydraulic Brake Pressure  

• w4: Blade Pitch Position  

To model the relationship between the main bearing temperature and the input variables, described by 

Equation (5.1), sparse Bayesian learning for regression [44, 45] was used. In previous similar studies [46, 

47],  

5.1.3Ambient Temperature Compensation  

In modelling wind turbine behaviour, a major consideration is the effect of ambient temperature. 

Turbine sensor variables, and particularly temperature sensor variables, are a function of both the current 

operating conditions and the ambient temperature. This presents some issues when trying to model 
fault-free turbine behaviour. For a model to be sufficiently descriptive of turbine behaviour, across all 

seasons and weather conditions, significant volumes of historical data would be required to capture the turbine 

responses under varying conditions. Alternatively, some approach to detrending the data, to remove the 

ambient temperature relationship, must be considered. In this study, an approach to detrending turbine 
temperature variables, suggested by Wiggelinkhuizen et. al [49, 50], was employed. To detrend the turbine 

temperature values, and remove the ambient temperature contribution, each relevant turbine signal was 

linearly corrected for ambient temperature, using data collected when the turbine was operating under a 
small rotational speed. Figure 5.3 shows a scatter plot of ambient temperature and main bearing 

temperature, over an 11-month period from January to November. The samples shown were recorded when 

the turbine was operating under a small rotational speed, between 0.1 and 1 RPM. Figure 5.3 illustrates the 
linear relationship between main bearing temperature and ambient temperature under low rotational speed.  

 

Figure 5.3. Relationship between main bearing temperature and ambient temperature, under low-load conditions 

5.1.4 Model training and validation 

For carry out this study 12 month historical data is collected. Foe each turbine there were approximately 

12000 samples at an sampling interval of 10 min. From this collected data set 2 turbines were selected 
randomly for validation of proposed modeling approach. Each fault free turbine had 4000 samples which 

represents a 3 month data. A 3 month data was selected foe training and developing model for describing 

the fault free behaviour of turbine. Once each of the models, describing normal fault-free main bearing 

temperature behaviour, were trained, they were each tested on the remaining previously unseen samples for 
each turbine. Figure 5.5 shows the performance of the first fault-free turbine model over a 20-day period of 

previously unseen data. Figure 5.5 (a) shows the model estimate and the actual main bearing temperature, 
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and Figure 5.5 (b) shows the residual term, which is the difference between the estimated and actual main 
bearing temperature.  

 

Figure 5.4. Main bearing temperature: original signal ((a) upper plot)and normalized for ambient temperature 

signal ((b) lower plot) 

The second turbine data collected for 5 months is used as historical data for confirmation of error signal to be 
zero mean and Gaussian distributed.Figure 5.6. As can be seen in Figure 5.6, the error-term is zero-mean 

and Gaussian distributed.  

 
Figure 5.5. Main bearing temperature estimation (a) and generated residual signal (b) indicating error 

magnitude at each sample time (fault-free turbine) 
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Figure 5.6. Distribution of residual signal between estimated and actual main bearing temperature (fault-free 

turbine) 

5.2. Fault Detection of Main Bearing  

Now it was the time to investigate if the proposed model is capable of identifying and tracking the 

position of fault developed in the main bearing. There may be various faults in main bearing such as 

corrosion, pitting or fretting which may generate excessive heat in the main bearing and this heat is 

beyond the limit of fault free bearing. In available data set we find two turbines suffered with main 
bearing during general visual inspection and bearing is replaced by removing the turbine from service. 

But in turbine 2 the main bearing temperature exceeded the fault free main bearing temperature limit 

and automatically shut down the turbine. Turbine remains far out of service for a number of weeks 
while the main bearing was replaced. Figure 5.7 (a) illustrates the main bearing temperature in the final 105 

days of operation of Turbine A, which was removed from service following a visual inspection of the main 

bearing. Figure 5.7 (b) shows the residual term generated between the estimated and actual main bearing 

temperature. Visual analysis appears to show some changes in the characteristics of the residual signal 
after approximately 150 days. Before Turbine A was removed from service, the mean of the residual 

signal is clearly above 0. Using the residual signal in Figure 5.7 (b), in its raw form, the ability to 

make informed maintenance decisions, regarding when to perform maintenance, is clearly difficult. Guo et 
al. [51] suggest using a moving average (MA) filter to detect statistically significant changes in the mean 

and variance of the residual signal. Figure 5.8 (b) illustrates a moving-average filter applied to the 

residual signal from Figure 5.7 (b). A two-day window, comprising 288 samples, was used to generate the 
signal shown.  

 
Figure 5.7. Main bearing temperature and residual signal (Turbine A) 
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5.2.1 How to detect Fault by turbine operating mode  

Still the discussion was limited up to identification and tracking of turbine incipient faults by using 

simple moving average filter which does not account for different turbine operating modes. In previous 

sections the turbine fault free modeling was limited up to, when residual signal was free of turbine 

operating modes. But in actual practice the residual signal may vary with different turbines operating 
modes. In such conditions the residual signal is not only the function of component degradation but to 

evaluate moving average signal also need to account  different changing operating of turbines. Now 

objective is to achieve improved error tracking when turbine is operating within a specific region. The 
turbine operating modes can be classify on the basis of power output. Because power output is a function 

of generator RPM which in turn depends upon shaft RPM. The turbine operating modes can also be 

identify by generator and gear box bearing and also by gear box oil temperature. At high wind speed the 

gearbox and generator bearing temperature increases very rapidly as compared to no wind speed and low 
load operations. The main focus is to identify turbine operating modes to increase the efficiency of this 

system to track main bearing fault degradation.     

 

Figure 5.10. Main bearing temperature residual and filtered residual signal (Turbine B) 

5.3. Fault prognostics for wind turbine 

In this section application potential of the multiple filtering for wind turbine prognostics are identified. 

There was only one historical example hence work presented here is a simply a proof of concept and a 

number of assumptions are made. However general concept and applied approach shows the potential for 

development of prognostic capabilities for wind turbine. 

5.3.1 Incipient fault detection  

For developing prognostic capabilities for main bearing it require first to identify the presense of 

incipient fault condition. A residual signal independent of any turbine operating mode can be evaluated 
without any filter but it require a exponential average filter (EWMA) to measure the statistical 

characteristics of residual signal, during low load operations. The occurance of any fault can be identified 

by deviation in value of residual signal. First it need to set a threshold value for confirmation of presense 
of incipient fault condition. Three fault free turbines are used for model development and testing. Using 

the model developed for each turbine each model was tested on previously test data. The residual signal 

is is filtered using EWMA filter and distribution of the three EWMA filtered residual signals was then 

analyzed. Figure 5.13 illustrates the distribution of the three filtered residual signals, during Low-Load 
operations, for each of the three fault-free cases. The distribution of the EWMA filtered fault-free residual 

signal, during Low-Load operations, can be approximated by a Gaussian distribution, as illustrated in 
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Figure 5.13. The distribution is approximately zero-mean, as might be expected during fault-free  

 

Figure 5.13. Distribution of EWMA filtered residual signal during Low-Load operations for 3 fault-free turbines 

operation, with a standard deviation ( ) of approximately 0.0097. For a Gaussian distribution, the 99% 

confidence limits are defined by approximately 3 . Therefore, to provide a sufficient separation between the 

expected limits of "normal" fault-free operation, a value of 0.004 (> 4 ) was chosen to define the threshold at 
which a fault condition is confirmed. The location of the fault threshold is illustrated in Figure 5.13.  

Having selected an appropriate fault threshold for the EWMA filtered residual signal, during Low-Load 
operations, Figure 5.14 illustrates the point at which the fault condition is first identified in the available 

historical main bearing failure example, i.e. Turbine B. Using the selected fault threshold value, a fault is 

first detected approximately 32 days prior to failure. Predicting the evolution of the filtered residual signal, 

which henceforth is described as the fault indicator, defines the realm of prognostics.  

 

Figure 5.14. Evolution of EWMA filtered residual signal during Low-Load operations for faulty main bearing 

(Turbine B) 

5.3.2 Multiple particle filtering for wind turbine prognostics  

The application of particle filtering for prognostics involves two distinct stages 1.) state estimation and 2.) 

long-term predictions. In the first stage, predictions generated by the state-transition model are combined 
with fault indicator measurements (i.e. EWMA filtered residual signal values), to generate a posterior 

estimate of the current degradation state. This process is repeatedly recursively as new fault indicator 

measurements are generated. Once the current degradation state is estimated, the second stage can be 

carried out; long-term predictions. Using the state transition model, the set of particles defining the current 
degradation state estimate can be propagated into the future, until the value of the degradation state exceeds a 

predefined threshold. The predefined threshold is defined by the hazard zone specified for the current 

application. Figure 5.14 illustrates the hazard zone chosen for the current application.  

The performance of a particle filtering approach relies upon the ability to accurately model the 

degradation process. However, without a physics-of-failure model, developing an accurate model with 

sufficient fidelity to describe the likely behaviour of all future failure examples is difficult. In addition, 
uncertainty regarding the future load profile, which in the case of wind turbines depends upon future 



Condition Monitoring of Wind Turbine Gear Box 

 

 
International Journal of Research Studies in Science, Engineering and Technology [IJRSSET]                     48   

weather conditions, introduces a significant level of uncertainty regarding the future behaviour of the 
degradation process. To address this challenge, a multiple model particle filtering approach is considered. By 

generating a large set of candidate models, designed to approximate the possible behaviour of future failure 

examples, the predictions of each of the models can be combined and, as the fault evolves, the plausibility 

that each model is descriptive of the observed behaviour can be computed. The mathematics involved in 
updating the candidate model weights and generating RUL estimates which are a weighted combination of 

RUL estimates generated by each model. 

Modeling turbine main bearing degradation   

In applying the particle filtering framework for main bearing prognostics, the first task is to identify a 

suitable model to describe the evolution of the main bearing degradation process, as described by the fault 

indicator signal. With only a single failure example available, some significant assumptions regarding the 

degradation behaviour of future main bearing failures, must be made. The form of the model used to 
describe the evolution of the main bearing fault indicator is given by  

Z
s
 = z(s-1) + β 1 exp β 2/us)   u

2
s ]+ β 

3
 exp [β 

4
 u

s
] + 

s
                                                                                       (5.3)                                                                 

where zs represents the degradation state at time us, the βi values represent model parameters which can be 

tuned to fit the model to describe specific behaviour, and k is a zero-mean Gaussian distribution 

representing the process noise term. The structure of the model described by Equation (5.3) provides great 
flexibility in tuning the model to describe observed behaviour.  

With only a single historical failure example available, generating a set of candidate models, which are 

designed to describe the potential behaviour of future examples, is difficult. To address this task, the 
model parameters in Equation (5.3) were first tuned to fit the available historical example. Using the 

identified value of each βi parameter, a distribution of values for each βi parameter was generated, using the 

identified βi parameter value as the mean of the distribution. By setting a range of values for each βi parameter and 

sampling randomly from each distribution, a large set of candidate models was generated to describe the behaviour 

of future failure examples. By appropriate tuning of the distribution from which each βi value is sampled, a 

set of candidate models which were deemed sufficient to describe future failure examples, given the lack of 

current understanding, were generated.  

6. CONCLUSIONS 

This paper has investigated the development of algorithms for condition monitoring and prognostics main 

bearing of wind turbine. Finally, a condition monitoring solution for the main bearing on utility scale 
wind turbines was presented. The approach developed exploits data collected by SCADA systems, 

which are installed as standard on most modern wind turbines. The benefit of using such data in 

developing condition monitoring solutions is that no additional hardware, in terms of sensors, data 
collection, storage, and processing capabilities are required, thus enabling wind farm operators to better 

exploit already installed data collection and monitoring systems. 

This paper has focused on the development of condition monitoring and prognostic algorithms for wind 
turbines. While the developed algorithms are specific to the individual problems addressed, a number of 

more general issues can be concluded. The first issue, which is common across all of the investigated 

application domains, is the importance of investigating equipment response to degradation under different 

operating modes. The primary contribution of the paper is the development and demonstration of a 
multiple model particle filtering algorithm for prognostics. The developed algorithm has a number of 

desirable properties, which enable it to be adapted and applied across different application domains. 

7. FUTURE WORK  

From a wind turbine perspective, the presented work has demonstrated the potential for the development of 

prognostic capabilities for wind turbines. As the number of historical failure examples grows, the 

demonstrated capabilities can continue to be improved. As the size of wind turbines continue to expand, 
and with wind farms increasingly being located offshore, the potential benefits of prognostic capabilities 

will also continue to grow. In addition, the developed approach to modeling the fault-free behaviour of the 

main bearing can also be replicated for other turbine components, such as the gearbox and generator, 
enabling wind farm operators to better exploit already available information. Furthermore, the spare 

Bayesian learning scheme for regression has clear potential in the wind turbine domain, as it has been 

identified that it is necessary to model the fault-free behaviour of each individual turbine. The fast marginal 
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likelihood maximization scheme developed by Tipping enables the fast training of such models, which is of 

particular use across a wind farm with potentially hundreds of turbines.  
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